New cyclopropane derivatives of betulin were synthesized by attachment of dichlorocarbenes or dibromocarbenes to the double bond of betulin diacetate, followed by the deprotection of hydroxyl groups. The betulin cyclopropane derivative was obtained from 20,29-dihydro-20,29-dichloromethylenebetulin by treatment with lithium in tert-butanol. These compounds were converted into the corresponding derivatives of betulonic acid by oxidation with chromium trioxide. The reduction of oxo group with sodium borohydride led to the corresponding derivatives of betulinic acid. 20,29-Dihydro-20,29-dichloromethylenebetulinic acid proved to be the most cytotoxic toward human melanoma of the Colo 38 and Bro lines and human ovarian carcinoma of the CaOv line (IC50 10 microM). 20,29-Dihydro-20,29-dibromomethylenebetulinic acid inhibited the growth of the Bro melanoma cell line and the CaOv carcinoma cell line practically by 50% at a concentration of 10 microM. The other derivatives of betulinic and betulonic acids were active toward all of the three cancer cell lines at concentrations higher than 10 microM. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.
Two methods of obtaining of 3 alpha-betulinic acid and related compounds from their 3 beta-epimers were studied: the reaction of bimolecular substitution and the stereoselective reduction of 3-ketoderivatives. The substitution of acyloxy by formyloxy group in 3-O-tosyllupeol or of the betulin hydroxyl by benzoyloxy group resulted only in delta 2, 3-elimination products, with none of the expected products of bimolecular substitution being found. The catalytic hydrogenation of betulonic acid over Raney nickel resulted only in reduction of the isopropenyl double bond, whereas the use of 5% Ru/C gave a 60:40 mixture of epimers of dihydrobetulinic acid. Practically the same mixture of betulinic acid epimers was obtained when reducing betulonic acid with L-Selectride. The cytotoxic activity of 3 alpha-betulinic acid increased toward melanoma Bro cells and decreased toward melanoma MS cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.