Sufficient conditions of interval absolute stability of nonlinear control systems described in terms of systems of the ordinary differential equations with delay argument and also neutral type are obtained. The Lyapunov-Krasovskii functional method in the form of the sum of a quadratic component and integrals from nonlinearity is used at construction of statements.
This paper provides sufficient conditions for absolute stability of an indirect control Lur'e problem of neutral type. The conditions are derived using a Lyapunov-Krasovskii functional and are given in terms of a system of matrix algebraic inequalities. From these matrix inequalities a sufficient condition for linear state feedback stabilizability follows. MSC: 34H15; 34K20; 93C10; 93D05
The paper deals with the stabilization problem of Lur'e-type nonlinear indirect control systems with time-delay argument. The sufficient conditions for absolute stability of the control system are established in the form of matrix algebraic inequalities and are obtained by the direct Lyapunov method. MSC: 34H15; 34K20; 93C10; 93D05
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.