In this paper, one of the ways to reduce carbon dioxide (CO 2) emissions into the atmosphere through the use of various types of solar power plants (SES) was considered. The paper provides an overview of the energy resources that currently exist in the Republic of Cuba, as well as the new investments made by the country in order to introduce a more extensive use of the renewable energy sources. The paper also describes the benefits of renewable energy that help to reduce the CO 2 emissions into the environment.
This paper represents control strategy of anisotropic permanent magnet synchronous motor (IPMSM) in the field-weakening region. Field weakening controller allows to increase maximum achievable speed with output torque reduction. Proposed control system consists of four general modes: MTPA (maximum torque per ampere), MC (maximum current), FW (field weakening), and MTPV (maximum torque per voltage) which must be chosen accordingly to motor speed, current and torque references. Operation point is found as an intersection of torque hyperbola and voltage ellipse curves in d-q motor’s current reference frame involving motor parameters’ limits. However, due to nonlinear dependence between torque and voltage equations, it is quite complicated to obtain both right control mode selection and reference output calculation. In order to solve this problem, a unified control algorithm adopted for wide speed and torque reference with online constraints calculation is proposed. Matlab/Simulink control model of PMSM motor and control system were designed in order to show developed strategy performance. Simulation results shows increasing of speed limit by more than 2.5 times related to nominal speed with high controller’s response. However, speed limit increasing leads to a decrease in motor’s output torque. Due to this fact, presented control strategy is not suitable for applications where nominal torque level is essential for all speed operation points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.