Leishmaniasis is a zoonotic disease of worldwide relevance. Visceral leishmaniasis is endemic in Brazil, where it is caused by Leishmania infantum with Lutzomyia longipalpis being the most important invertebrate vector. Non-human primates are susceptible to L . infantum infection. However, little is known about the role of these species as reservoirs. The aim of this study was to evaluate the transmissibility potential of visceral leishmaniasis by non-human primates through xenodiagnosis using the phlebotomine Lu . longipalpis as well as to identify phlebotomine species prevalent in the area where the primates were kept in captivity, and assess infection by Leishmania in captured phlebotomine specimens. Fifty two non-human primates kept in captivity in an endemic area for leishmaniasis were subjected to xenodiagnosis. All primates were serologically tested for detection of anti- Leishmania antibodies. Additionally, an anti- Lu . longipalpis saliva ELISA was performed. Sand flies fed on all animals were tested by qPCR to identify and quantify L . infantum promastigotes. Eight of the 52 non-human primates were positive by xenodiagnosis, including three Pan troglodytes , three Leontopithecus rosalia , one Sapajus apella , and one Miopithecus talapoin , with estimated numbers of promastigotes ranging from 5.67 to 1,181.93 per μg of DNA. Positive animals had higher levels of IgG anti- Lu . longipalpis saliva when compared to negative animals, prior to xenodiagnosis. Captive non-human primates are capable of infecting Lu . longipalpis with L . infantum . Our findings also demonstrate the relevance of non-human primates as sentinels to zoonotic diseases. Several phlebotomine species, including Lu . longipalpis , have been identified in the area where the primates were maintained, but only one pool of Lutzomyia lenti was infected with L . infantum . This study has implications for public health strategies and conservation medicine.
Introduction: Canine visceral leishmaniasis (CVL) is an endemic disease in Brazil, and integrated control actions have been adopted by the Brazilian Ministry of Health to control its spread. However, the transmission profile is unknown in areas with recent CVL cases, including Itaúna, located in the Brazilian state of Minas Gerais, where the present study was carried out. Methods: A total of 2,302 dogs from 12 neighborhoods were serologically tested for canine VL using the current diagnostic protocol adopted by the Brazilian Ministry of Health. Test positivity rate (TPR) and CVL prevalence were determined for each neighborhood. The presence of Leishmania was assessed in 60 seropositive dogs which had been recommended for euthanasia. Twenty-two of them (37%) were asymptomatic, and 38 (63%) were symptomatic for CVL. Parasitological (myeloculture and smear/imprint) and molecular (PCR) methods were employed for Leishmania detection in bone marrow, spleen, mesenteric lymph nodes, and ear skin. The infecting Leishmania species was identified by DNA sequencing. Results: CVL prevalence (per 1,000 dogs) varied from 0.0-166.67, depending on the neighborhood, with a mean of 68.96 (SD 51.38). Leishmania DNA was detected in at least one tissue from all seropositive dogs, with comparable TPR among tissues. Leishmania parasites were identified in most (54/60) seropositive dogs, and the infecting parasite was identified as Leishmania infantum in all of these. Conclusions: Prevalence of CVL is a contributor to the spread of visceral leishmaniasis in Itaúna.
Introduction: Leishmaniasis is a complex vector-borne infectious diseases caused by protozoan parasites in the genus Leishmania and spread by hematophagous phlebotomine sand flies (Diptera: Psychodidae, Phlebotominae). The aim of this study was to investigate the phlebotomine fauna, endophily and exophily of the species found, and possible influence of climatic factors on their populations. Methods: The study was conducted in the Xakriabá Indigenous Reserve (XIR) in the municipality of São João das Missões in northern Minas Gerais state, Brazil. Insects were collected over three consecutive nights in the last week of each month for 12 months from July 2015 to May 2016 from four houses in four different villages. Two traps were set up in each house: one in the intra-domicile and another in the peri-domicile. Results: A total of 2,012 phlebotomine sand fly specimens representing 23 species and belonging to 10 different genera were captured and identified. Among the studied villages, Riacho do Brejo showed the highest density and diversity of phlebotomine sand flies. The species Lutzomyia longipalpis (80.3%) and Nyssomyia intermedia (7.3%), which are major vectors of visceral and cutaneous leishmaniasis, respectively, had the highest population densities, both in the intra-and peri-domicile. No correlation was observed between climatic factors and the density of phlebotomine sand flies. Conclusions: The results of the present study may contribute to a better understanding and targeting of the measures for preventing and controlling leishmaniasis by the authorities responsible for indigenous health.
The aim of this study was to evaluate Leishmania vectors and investigate the environmental and climatic characteristics related to their transmission. This was a prospective eco-epidemiological study involving the systematic collection of sandflies and a canine serological survey in areas of municipality in Brazil. Blood samples from 1,752 dogs were examined to test for canine visceral leishmaniasis (VL). An entomological evaluation was carried out using 24 light traps in the peridomicile and intradomicile areas of 12 households for 12 months. Climate variables were analyzed using a simple Spearman correlation and a spatial analysis via the fuzzy logic method and K function. The prevalence rate of canine VL was 4.1% and 7.1% in the two areas that were studied, respectively. The entomological study resulted in the capture of 431 sandflies. Most (74%) of the specimens were captured in the peridomiciliary area, and 5.6% of the samples that were analyzed using molecular biology were positive for Leishmania spp. In particular, Leishmania infantum was found in 100% of the positive samples. The spatial analysis showed that one particular area presented a higher concentration of high-density overlapping points of Lutzomyia longipalpis and seropositive dog populations, indicating a higher risk of the concomitant occurrence of both events. The results show that a parasite-reservoir-vector interface is active in the studied areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.