The severe yellowing disease (amarelão) on melon plants is a serious problem in Brazil, although the causative agent remained unknown for a long time. Recently, recombinant isolates of cucurbit aphid‐borne yellows virus (CABYV) were reported as the possible causative agents of this disease on melon plants. Although aphids are known to be the vectors of the common type of CABYV isolates, almost no aphid colony was observed in the major melon fields in Brazil with high incidence of the severe yellowing disease. In contrast, whiteflies are often abundant. Based on this observation, the hypothesis of the transmission of recombinant CABYV by whiteflies was evaluated. After thorough transmission experiments, we found that this recombinant CABYV isolate was transmitted by the whitefly Bemisia tabaci MEAM1, but not by Aphis gossipii. Furthermore, the host response by whitefly‐based inoculation in cucurbits and other indicator plants showed differences in host range when compared to the common type of CABYV. Due to its transmissibility by the whitefly and the distant relationship of the P3/P5 protein to CABYV, the name “cucurbit whitefly‐borne yellows virus” is proposed for this recombinant CABYV. This is the second report of polerovirus transmission by the whitefly B. tabaci, following the report of pepper whitefly‐borne vein yellows virus.
Brazil is one of the major passion fruit producers worldwide. Viral diseases are among the most important constraints for passion fruit production. Here we identify and characterize a new passion fruit infecting-virus belonging to the family Geminiviridae: passion fruit chlorotic mottle virus (PCMoV). PCMoV is a divergent geminivirus unlike previously characterized passion fruit-infecting geminiviruses that belonged to the genus Begomovirus. Among the presently known geminiviruses, it is most closely related to, and shares ~62% genome-wide identity with citrus chlorotic dwarf associated virus (CCDaV) and camelia chlorotic dwarf associated virus (CaCDaV). The 3743 nt PCMoV genome encodes a capsid protein (CP) and replication-associated protein (Rep) that respectively share 56 and 60% amino acid identity with those encoded by CaCDaV. The CPs of PCMoV, CCDaV, and CaCDaV cluster with those of begomovirus whereas their Reps with those of becurtoviruses. Hence, these viruses likely represent a lineage of recombinant begomo-like and becurto-like ancestral viruses. Furthermore, PCMoV, CCDaV, and CaCDaV genomes are ~12–30% larger than monopartite geminiviruses and this is primarily due to the encoded movement protein (MP; 891–921 nt) and this MP is most closely related to that encoded by the DNA-B component of bipartite begomoviruses. Hence, PCMoV, CCDaV, and CaCDaV lineage of viruses may represent molecules in an intermediary step in the evolution of bipartite begomoviruses (~5.3 kb) from monopartite geminiviruses (~2.7–3 kb). An infectious clone of PCMoV systemically infected Nicotiana benthamina, Arabidopsis thaliana, and Passiflora edulis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.