The release of large quantities of CO 2 into the atmosphere has been linked to global warming and climate anomalies. Membrane processes offer a potentially viable energy-saving alternative for CO 2 capture in comparison with conventional technologies such as amine absorption. However, gas separation membranes that are currently available have insufficiently high permeance (flux) for large scale applications such as the treatment of high volume flue gas with low concentration of CO 2 . Here we demonstrate a class of thin film composite (TFC) membranes, consisting of a high molecular weight amorphous poly(ethylene oxide)/poly(ether-block-amide) (HMA-PEO/Pebax â 2533) selective layer and a highly permeable polydimethylsiloxane (PDMS) intermediate layer which was pre-coated onto a polyacrylonitrile (PAN) microporous substrate. In contrast to the performance of conventional materials, the selective layer of TFC membranes shows super-permeable characteristics and outstanding CO 2 separation performance. This unprecedented result arises from the introduction of HMA-PEOs into the Pebax â 2533 matrix, leading to high CO 2 permeability and flux. These results provide an encouraging direction to further develop TFC membranes for efficient CO 2 capture processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.