Development of brain metastases can occur in up to 30–50% of patients with breast cancer, representing a significant impact on an individual patient in terms of survival and quality of life. Patients with HER2-positive breast cancer have an increased risk of developing brain metastases; however, screening for brain metastases is not currently recommended due to the lack of robust evidence to support survival benefit. In recent years, several novel anti-HER2 agents have led to significant improvements in the outcomes of HER2-positive metastatic breast cancer. Despite these advances, brain and leptomeningeal metastases from HER2-positive breast cancer remain a significant cause of morbidity and mortality, and their optimal management remains an unmet need. This review presents an update on the current and novel treatment strategies for patients with brain metastases from HER2-positive breast cancer and discusses the open questions in the field.
Ewing sarcoma is the second most common bone sarcoma in children after osteosarcoma. It is a very aggressive malignancy for which systemic treatment has greatly improved outcome for patients with localized disease, who now see survival rates of over 70%. However, for the quarter of patients presenting with metastatic disease, survival is still dismal with less than 30% of patients surviving past 5 years. Patients with disease relapse, local or distant, face an even poorer prognosis with an event-free 5-year survival rate of only 10%. Unfortunately, Ewing sarcoma patients have not yet seen the benefit of recent years’ technical achievements such as next-generation sequencing, which have enabled researchers to study biological systems at a level never seen before. In spite of large multinational studies, treatment of Ewing sarcoma relies entirely on chemotherapeutic agents that have been largely unchanged for decades. As many promising modern therapies, including monoclonal antibodies, small molecules, and immunotherapy, have been disappointing to date, there is no clear candidate as to which drug should be investigated in the next large-scale clinical trial. However, the mechanisms driving tumor development in Ewing sarcoma are slowly unfolding. New entities of Ewing-like tumors, with fusion transcripts that are related to the oncogenic EWSR1-FLI1 fusion seen in the majority of Ewing tumors, are being mapped. These tumors, although sharing much of the same morphologic features as classic Ewing sarcoma, behave differently and may require a different treatment. There are also controversies regarding local treatment of Ewing sarcoma. The radiosensitive nature of the disease and the tendency for Ewing sarcoma to arise in the axial skeleton make local treatment very challenging. Surgical treatment and radiotherapy have their pros and cons, which may give rise to different treatment strategies in different centers around the world. This review article discusses some of these controversies and reproduces the highlights from recent publications with regard to diagnostics, systemic treatment, and surgical treatment of Ewing sarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.