whilst requiring significantly less computation time. Additionally, the proposed methodology enables simple calculation of the relative contributions of flexure, torsion and eccentric shear to moment transfer between slab and column. This information is pertinent to the development of improved codified design methods for calculating the critical design shear stress at eccentrically loaded columns.
Properly designed flat slab to column connections can perform satisfactorily under seismic loading.Satisfactory performance is dependent on slab column connections being able to withstand the imposed drift while continuing to resist the imposed gravity loads. Particularly at risk are pre 1970's flat slab to column connections without integrity reinforcement passing through the column. Current design provisions for punching shear under seismic loading are largely empirical and based on laboratory tests of thin slabs not representative of practice. This paper uses nonlinear finite element analysis (NLFEA) with ATENA and the Critical Shear Crack Theory (CSCT) to investigate the behaviour of internal slabcolumn connections without shear reinforcement subject to seismic loading. NLFEA is used to
The paper addresses this issue by proposing a method for calculating the design shear stress at wall corners for use in conjunction with the Critical Shear Crack Theory. The method is initially validated against test results for slabs supported on elongated columns as well as numerical simulations. Subsequently, the method is extended to the punching design of a slab supported by a wall corner. The proposed analysis of the slab-wall corner junction is validated against the predictions of nonlinear finite element analysis (NLFEA) employing 3-D solid elements as well as the joint-shell punching model (JSPM) previously developed by the authors.
The paper investigates the influence of support elongation on punching resistance at internal slab column connections without shear reinforcement. Nonlinear finite element analysis (NLFEA) with 3-D solid elements is used to study the influence of column elongation on stress and strain in the slab around the column. Punching failure is shown to be triggered by localised peaks in shear stress around the corners of the support. Significantly, one-way shear is shown to increase the shear resistance of slabs supported on columns with cross sectional dimensions greater than around six times the slab effective depth ( ). The common laboratory practice of supporting slabs in punching tests on elongated plates rather than columns is investigated numerically and is found to be reasonable despite uplift occurring in the central region of elongated plates. NLFEA with solid elements gives useful insights into punching
In flat-slab frames, which are typically designed as secondary seismic structures, the shear failure of the slab around the column (punching failure) is typically the governing failure mode which limits the deformation capacity and can potentially lead to a progressive collapse of the structure. Existing rules to predict the capacity of flat slab frames to resist imposed lateral displacements without losing the capability to bear gravity loads have been derived empirically from the results of cyclic tests on thin members. These rules account explicitly only for the ratio between acting gravity loads and resistance against concentric punching shear (so-called Gravity Shear Ratio). Recent rational models to estimate the deformation capacity of flat slabs show that other parameters can play a major role and predict a significant size effect (reduced deformation for thick slabs). In this paper, a closed-form expression to predict the deformation capacity of internal slab-column connections as a function of the main parameters is derived from the same model that has been used to develop the punching shear formulae for the second generation of Eurocode 2 for concrete structures. This expression is compared to an existing database of isolated internal slab-column connections showing fine accuracy and allowing to resolve the shortcomings of existing rules. In addition, the results of a testing programme on a full-scale flat-slab frame with two stories and 12 columns are described. The differences between measured interstorey drifts and local slab rotations influencing their capacity to resist shear forces are presented and discussed. With respect to the observed deformation capacities, similar values are obtained as in the isolated specimens and the predictions are confirmed for the internal columns, but significant differences are observed between internal, edge and corner slab-column connections. The effects of punching shear reinforcement and of integrity reinforcement (required according to Eurocode 2 to prevent progressive collapse after punching) are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.