SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATPdependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases.
SHP2 is a nonreceptor protein tyrosine
phosphatase encoded by the PTPN11 gene and is involved
in cell growth and differentiation
via the MAPK signaling pathway. SHP2 also plays an important role
in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein
as well as a potential immunomodulator, controlling SHP2 activity
is of high therapeutic interest. As part of our comprehensive program
targeting SHP2, we identified multiple allosteric binding modes of
inhibition and optimized numerous chemical scaffolds in parallel.
In this drug annotation report, we detail the identification and optimization
of the pyrazine class of allosteric SHP2 inhibitors. Structure and
property based drug design enabled the identification of protein–ligand
interactions, potent cellular inhibition, control of physicochemical,
pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of
TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine
(1), a highly potent, selective, orally efficacious,
and first-in-class SHP2 inhibitor currently in clinical trials for
cancer.
A screen of a library of diverse small-molecules against a subset of phosphatases identified 7b and 7c, which potently inhibit TC-PTP, PTPσ and PTP1B with no inhibition of PTP-LAR, PRL2 A/S, MKPX or papain.
PTP1B is a master regulator in the insulin and leptin metabolic pathways. Hyper-activated PTP1B results in insulin resistance and is viewed as a key factor in the onset of type II diabetes and obesity. Moreover, inhibition of PTP1B expression in cancer cells dramatically inhibits cell growth in vitro and in vivo. Herein, we report the computationally guided optimization of a salicylic acid-based PTP1B inhibitor 6, identifying new and more potent bidentate PTP1B inhibitors, such as 20h, which exhibited a > 4-fold improvement in activity. In CHO-IR cells, 20f, 20h, and 20j suppressed PTP1B activity and restored insulin receptor phosphorylation levels. Notably, 20f, which displayed a 5-fold selectivity for PTP1B over the closely related PTPσ protein, showed no inhibition of PTP-LAR, PRL2 A/S, MKPX, or papain. Finally, 20i and 20j displayed nanomolar inhibition of PTPσ, representing interesting lead compounds for further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.