Abstract-Analyzing written language is an interesting topic that has been studied by many disciplines. Recently, due to the explosive growth of Internet, social media has become an attractive source of searching and getting information for research purposes on written communication. It is true that different words in a sentence serve different purposes of conveying the meaning while they are of different significance. Therefore, this paper is going to employ the attention mechanism to find out the relative contribution or significance of every word in the sentence. In this work, we address the problem of detecting whether a tweet is ironic or not by using Attention-Based Long Short-Term Memory Network. The results show that the proposed method achieves competitive performance on average recall and F1 score compared to the state-of-the-art results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.