Assignment of the most established electronic circular dichroism (ECD) spectra of polypeptides and foldamers is either “evidence based” or relies on the 3D structures of longer oligomers of limited internal dynamics, which are derived from NMR spectroscopy (or X‐ray) data. Critics warn that the use of NMR spectroscopy and ECD side by side has severe limitations for flexible molecules because explicit knowledge of conformational ensembles is a challenge. Herein, an old–new method of comparing ab initio computed and measured vibrational circular dichroism (VCD) data is presented to validate both the structures (conf(i)) and their relative weights (c(i)) that make up the conformational ensemble. Based on the array of {conf(i), c(i)}, the pure ECD spectra, g(i)conf(i), can be ab initio calculated. The reconstructed spectrum Σc(i)g(i)conf(i) can thus help to assign any experimental ECD counterparts. Herein, such a protocol is successfully applied to flexible foldamer building blocks of sugar β‐amino acid diamides. The epimeric pair of the model system was selected because these molecules were conformationally tunable by simple chemical modification, and thus, the robustness of the current approach could be probed. The initial hydrogen bond (NH⋅⋅⋅O) eliminated by N‐methylation reorients the amide plain, which influences the chiroptical properties of the foldamer building block; this structural change is successfully monitored by changes to the VCD and ECD transitions, which are now assigned to pure conformers. The current method seems to be general and effective without requiring extensive CPU and spectroscopic resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.