SUMMARYWe explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species-and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.
Sucrosesucrose 1 -fructosyltransferase (1 -SST), an enzyme involved in fructan biosynthesis, was purified to homogeneity from tubers of Helianfbus fuberosus that were harvested in the accumulation phase. Cel filtration under native conditions predicted a molecular mass of about 67 kD. Electrophoresis or gel filtration under denaturing conditions yielded a 27-and a 55-kD fragment. 1 -SST preferentially catalyzed the conversion of sucrose into the trisaccharide 1 -kestose (CF,). Other reactions catalyzed by 1 -SST at a lower rate were self-transfructosylations with CF, and 1,l -nystose (CF,) as substrates yielding CF, and 1,1,1 -fructosylnystose, respectively, as products. 1 -SST also catalyzed the removal of the terminal fructosyl unit from both CF, and CF,, which resulted in the release of sucrose and CF,, respectively, and free Fru. The purified enzyme did not display P-fructosidase activity. An enzyme mixture of purified 1 -SST and fructan:fructan 1 -fructosyltransferase, both isolated from tubers, was able to synthesize fructans up to a degree of polymerization of at least 13 with sucrose as a sole substrate.
BackgroundAspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated.ResultsExpression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5–8 times higher than previously described.ConclusionsItaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A. niger strains that produce over twenty five-fold higher levels of itaconic acid and show a twenty-fold increase in yield compared to a strain expressing only CadA.
We have transformed sugar beet into a crop that produces fructans. The gene encoding 1-sucrose:sucrose fructosyl transferase (1-SST), which was isolated from Helianthus tuberosus, was introduced into sugar beet. In H. tuberosus, 1-SST mediates the first steps in fructan synthesis through the conversion of sucrose (GF) into low molecular weight fructans GF2, GF3, and GF4. In the taproot of sugar beet transformed with the 1-sst gene, the stored sucrose is almost totally converted into low molecular weight fructans. In contrast, 1-sst expression in the leaves resulted in only low levels of fructans. Despite the storage carbohydrate having been altered, the expression of the 1-sst gene did not have any visible effect on phenotype and did not affect the growth rate of the taproot as observed under greenhouse conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.