Gold ore processing uses cyanide (CN(-) ), which often results in large volumes of thiocyanate- (SCN(-) ) contaminated wastewater requiring treatment. Microbial communities can degrade SCN(-) and CN(-) , but little is known about their membership and metabolic potential. Microbial-based remediation strategies will benefit from an ecological understanding of organisms involved in the breakdown of SCN(-) and CN(-) into sulfur, carbon and nitrogen compounds. We performed metagenomic analysis of samples from two laboratory-scale bioreactors used to study SCN(-) and CN(-) degradation. Community analysis revealed the dominance of Thiobacillus spp., whose genomes harbour a previously unreported operon for SCN(-) degradation. Genome-based metabolic predictions suggest that a large portion of each bioreactor community is autotrophic, relying not on molasses in reactor feed but using energy gained from oxidation of sulfur compounds produced during SCN(-) degradation. Heterotrophs, including a bacterium from a previously uncharacterized phylum, compose a smaller portion of the reactor community. Predation by phage and eukaryotes is predicted to affect community dynamics. Genes for ammonium oxidation and denitrification were detected, indicating the potential for nitrogen removal, as required for complete remediation of wastewater. These findings suggest optimization strategies for reactor design, such as improved aerobic/anaerobic partitioning and elimination of organic carbon from reactor feed.
Thiocyanate (SCN−) is a toxic compound that forms when cyanide (CN−), used to recover gold, reacts with sulfur species. SCN−‐degrading microbial communities have been studied, using bioreactors fed synthetic wastewater. The inclusion of suspended solids in the form of mineral tailings, during the development of the acclimatized microbial consortium, led to the selection of an active planktonic microbial community. Preliminary analysis of the community composition revealed reduced microbial diversity relative to the laboratory‐based reactors operated without suspended solids. Despite minor upsets during the acclimation period, the SCN− degradation performance was largely unchanged under stable operating conditions. Here, we characterized the microbial community in the SCN− degrading bioreactor that included solid particulate tailings and determined how it differed from the biofilm‐based communities in solids‐free reactor systems inoculated from the same source. Genome‐based analysis revealed that the presence of solids decreased microbial diversity, selected for different strains, suppressed growth of thiobacilli inferred to be primarily responsible for SCN− degradation, and promoted growth of Trupera, an organism not detected in the reactors without solids. In the solids reactor community, heterotrophy and aerobic respiration represent the dominant metabolisms. Many organisms have genes for denitrification and sulfur oxidation, but only one Thiobacillus sp. in the solids reactor has SCN− degradation genes. The presence of the solids prevented floc and biofilm formation, leading to the observed reduced microbial diversity. Collectively the presence of the solids and lack of biofilm community may result in a process with reduced resilience to process perturbations, including fluctuations in the influent composition and pH. The results from this investigation have provided novel insights into the community composition of this industrially relevant community, giving potential for improved process control and operation through ongoing process monitoring.
a b s t r a c tThe ability to recycle and reuse process water is a major contributing factor toward increased sustainability in the mining industry. However, the presence of toxic compounds has prevented this in most bioleaching operations. The ASTER TM process has been used for the bioremediation of cyanide (CN) and thiocyanate (SCN À ) containing effluents at demonstration and commercial scale, increasing the potential for recycling of the treated effluent. The process relies on a complex consortium of microorganisms and laboratory tests have shown that the biomass retention, in suspended flocs or attached biofilm, significantly improved SCN À degradation rates. The current research evaluated the process performance in the presence of suspended solids (up to 5.5% m/v) ahead of implementation at a site where complete tailings removal is not possible. Experiments were performed in four 1 l CSTRs (with three primary reactors in parallel at an 8 h residence time, feeding one secondary reactor at a 2.7 h residence time). Stable operation at the design specifications (5.5% solids, 100 mg/l SCN À feed, effluent SCN À <1 mg/l) was achieved within 50 days, including a period of adaptation. The pH had the most significant effect on performance, with significant inhibition below pH 6. The presence of gypsum and anhydrite phases in the fresh tailings was most likely responsible for the observed decrease in pH. A maximum SCN À degradation rate of >57 mg/l/h was achieved, despite no obvious floc formation. Microbial ecology studies (16S rRNA clone library) revealed reduced diversity relative to reactors operated without suspended solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.