Context. There is a problem of identifying the subjective entropy of the navigator as an indication of negative human error in maritime transport. The aim of the study is to develop the data system to identify the negative manifestations of the human error for ensuring safety in maritime transport.Objective. The objective of the work is to design the data system consisting of two levels. Levels are targeted at detection of primary factors and secondary factors of subjective entropy of the navigator increase.Method. Within the scope of this work, the phases of the navigator's activity are determined, in which negative manifestations of the human error arise. This most often occurs during emergency situations. It is determined that the navigator's loss of focus leads to inadequate actions in relevant situations. Stressful situations are the second reason that affects self-control level. The factors' expanses influencing the navigator's subjective entropy increase as well as the vector affecting the subjective entropy at the first level of the formal system are determined. The arrangement of sets of factors was carried out. The arrangement result represents the formal system's first level description. Multi-objective optimization problem is vital for optimal solutions identification. The patterning's target is error evaluation on finding a vector, which is an essential stage. The lower limit of the system identification level is determined. The formal description of actions at the second level of the system is carried out and vector is specified at this level. The dependences of second-level vectors' impacts on navigator subjective entropy increase are specified with maximum accuracy. Time input estimation for system actuation allows us to determine three operating modes of the system. The input data for operating modes specification is indicated. The matrix-based framework algorithm of navigator's behavior during emergency situations is given.Results. Formal approaches were confirmed by simulation patterning using the navigation simulator NTPRO 5000. The data obtained allowed to build an algorithm in navigator's shaping of in various situations.Conclusions. The proposed formal approaches, patterns and algorithms will provide a basis for navigator's behavior analysis during emergency situations. The search of the best practice of human error data mining based on real data and simulator training data can be the direction for future research. This will allow to determine the mathematical expectation of navigator's behavior in emergency situations, as well as when performing operations with a low coefficient of experience.KEYWORDS: human error, behavior pattern, subjective entropy, emergency situations.
The article discusses the issues of automatic control of the vessel’s movement using excessive control, which allows to organize the movement of the vessel without a drift angle, to reduce the hydrodynamic resistance and fuel consumption. Issues of reducing energy consumption and fuel economy on board, as well as related issues of reducing emissions and improving the environment are especially relevant at the present time. A brief review of literature devoted to improving the energy efficiency of ships was carried out. As a result of the analysis, it was found that the issues of improving energy efficiency are solved in various ways, for example, constructively, by reducing weight, hydrodynamic and aerodynamic drag of the hull, using a sail, creating more advanced power plants, however, the authors have not found methods and algorithms for reducing hydrodynamic drag and fuel consumption through the use of excessive control. It is concluded that the development of such systems is relevant. Mathematical, algorithmic, and software have been developed for an onboard controller simulator of a vessel’s motion control system with excessive control, the operability and efficiency of which has been verified by numerical simulation in a closed circuit with a mathematical model of the control object for various types of vessels, navigation areas and weather conditions. The experiments have confirmed the efficiency and effectiveness of the developed method, algorithmic and software, and allow us to recommend them for practical use in the development of mathematical support for vessel control systems with excessive control.
The aim of the work is to develop a method for optimal control of handling operations with heavy lift cargo on sea vessels. Based on the review of scientific research in the field of loading heavy lift cargo, priority directions for improving the automated control systems for cargo handling operations on ships have been determined. Within a scientific hypothesis, it was proposed to synchronize solutions to the problem of ship propulsion control and automated control of heavy lift onboard cranes in order to improve the accuracy of loading processes. The paper analyzes the dynamic model of the "vessel-crane-cargo" system and the criteria of optimality in the problem of ship regulation-stabilization under minimization of loading time. An inverse loading algorithm has been developed, based on the principles of the loading control optimization with limiting the choice of motion by linear displacements and turns of the vessel. When executing the inverse algorithm, restrictions associated with the minimization of heeling moments in the "vessel-crane-cargo" system and restrictions associated with the maximum and minimum boom outreach are applied. The study determined the technical feasibility of achieving invariance in the cargo stabilization system with the inverse loading algorithm on heavy lift vessels. On the basis of the proposed method, simulation modeling of the ship loading process was carried out on simulators at the Kherson State Maritime Academy. The simulation modeling has shown that the use of the inverse algorithm will reduce the time of cargo operations by 50-70 percent and, as a result, reduce the risk of emergencies when loading the ship. It was also determined that the use of the inverse algorithm is appropriate for cargo of more than 100 tons
Context. There were considered the issues of improving the accuracy and reliability of automatic vessel motion control systems in conditions of large deviations in sensors measurements during maneuvering and failures of sensors and actuators. The object of research is the process of automatic vessel motion control in conditions of large deviations in sensors measurements during maneuvering and failures of sensors and actuators. The subject of research is a method and algorithms for improving the accuracy and reliability of automatic vessel motion control systems in conditions of large deviations in sensors measurements during maneuvering and failures of sensors and actuators. Objective. The aim of the research is development a method and algorithms for improving the accuracy and reliability of automatic vessel motion control systems in conditions of large deviations in sensors measurements during maneuvering and failures of sensors and actuators. Method. This goal is achieved by using in onboard controller of the automatic vessel motion control systems an observer to estimation the parameters of the state vector in the linear motion channel by measurements of linear speed and position sensors; estimation the parameters of the state vector in the angular motion channel by measurements of rotational speed and angular position sensors; continuous monitoring of the measured information by comparing it with the obtained estimations; correction estimations in the linear motion channel by measurements of linear speed and position sensors that have passed control; correction estimations in the angular motion channel by measurements of rotational speed and angular position sensors that have passed control; formation of a sensor failure in the linear motion channel (linear speed sensor or position sensor), if its measurements differ from the corresponding estimations for a greater than permissible value, to parry the failure in the linear motion channel by disconnecting the failed sensor from the observer and further estimation according to another sensor working in pairs; formation of a sensor failure in the angular motion channel (rotation speed sensor or angular position sensor), if its measurements differ from the corresponding estimations for a greater than permissible value, to parry the failure in the angular motion channel by disconnecting the failed sensor from the observer and further estimation according to another sensor working in pair; formation of an actuators failure in the linear motion channel (engine, automation or other device) if a simultaneous or sequential failure of both sensors were detected-linear speed sensor and position sensor, actuator failure alarm in the linear motion channel; formation of an actuators failure in the angular motion channel (rudders, drives, other devices) if a simultaneous or sequential failure of both sensors were detected-rotation speed sensor and angular position sensor, actuator failure alarm in the angular motion channel. This method and algorithms make it possible to i...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.