In this study, we propose a novel optimization algorithm, with application to the refinement of molecular complexes. Particularly, we consider optimization problem as the calculation of quasi-static trajectories of rigid bodies influenced by the inverse-inertiaweighted energy gradient and introduce the concept of advancement region that guarantees displacement of a molecule strictly within a relevant region of conformational space. The advancement region helps to avoid typical energy minimization pitfalls, thus, the algorithm is suitable to work with arbitrary energy functions and arbitrary types of molecular complexes without necessary tuning of its hyper-parameters. Our method, called controlled-advancement rigid-body optimization of nanosystems (Carbon), is particularly useful for the large-scale molecular refinement, as for example, the putative binding candidates obtained with protein-protein docking pipelines. Implementation of Carbon with user-friendly interface is available in the SAMSON platform for molecular modeling at https://www.samson-connect.net.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.