This work studies the problem of thermomagnetoelectroelastic anisotropic bimaterial with imperfect high-temperature conducting coherent interface, whose components contain thin inclusions. Using the extended Stroh formalism and complex variable calculus, the Somigliana-type integral formulae and the corresponding boundary integral equations for the anisotropic thermomagnetoelectroelastic bimaterial with high-temperature conducting coherent interface are obtained. These integral equations are introduced into the modified boundary element approach. The numerical analysis of new problems is held and results are presented for single and multiple inclusions.
The paper presents a rigorous and straightforward approach for obtaining the 2D boundary integral equations for a thermoelastic half-space containing holes, cracks and thin foreign inclusions. It starts from the Cauchy integral formula and the extended Stroh formalism which allows writing the general solution of thermoelastic problems in terms of certain analytic functions. In addition, with the help of it, it is possible to convert the volume integrals included in the equation into contour integrals, which, in turn, will allow the use of the method of boundary elements. For modelling of solids with thin inhomogeneities, a coupling principle for continua of different dimensions is used. Applying the theory of complex variable functions, in particular, Cauchy integral formula and Sokhotski–Plemelj formula, the Somigliana type boundary integral equations are constructed for thermoelastic anisotropic half-space. The obtained integral equations are introduced into the modified boundary element method. A numerical analysis of the influence of boundary conditions on the half-space boundary and relative rigidity of the thin inhomogeneity on the intensity of stresses at the inclusions is carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.