Analyzing the clustering of galaxies at the field level in principle promises access to all the cosmological information available. Given this incentive, in this paper we investigate the performance of field-based forward modeling approach to galaxy clustering using the effective field theory (EFT) framework of large-scale structure (LSS). We do so by applying this formalism to a set of consistency and convergence tests on synthetic datasets. We explore the high-dimensional joint posterior of LSS initial conditions by combining Hamiltonian Monte Carlo sampling for the field of initial conditions, and slice sampling for cosmology and model parameters. We adopt the Lagrangian perturbation theory forward model from [1], up to second order, for the forward model of biased tracers. We specifically include model mis-specifications in our synthetic datasets within the EFT framework. We achieve this by generating synthetic data at a higher cutoff scale Λ0, which controls which Fourier modes enter the EFT likelihood evaluation, than the cutoff Λ used in the inference. In the presence of model mis-specifications, we find that the EFT framework still allows for robust, unbiased joint inference of a) cosmological parameters — specifically, the scaling amplitude of the initial conditions — b) the initial conditions themselves, and c) the bias and noise parameters. In addition, we show that in the purely linear case, where the posterior is analytically tractable, our samplers fully explore the posterior surface. We also demonstrate convergence in the cases of nonlinear forward models. Our findings serve as a confirmation of the EFT field-based forward model framework developed in [2-7], and as another step towards field-level cosmological analyses of real galaxy surveys.
Decaying or annihilating dark matter particles could be detected through gamma-ray emission from the species they decay or annihilate into. This is usually done by modeling the flux from specific dark matterrich objects such as the Milky Way halo, Local Group dwarfs, and nearby groups. However, these objects are expected to have significant emission from baryonic processes as well, and the analyses discard gamma-ray data over most of the sky. Here we construct full-sky templates for gamma-ray flux from the large-scale structure within ∼200 Mpc by means of a suite of constrained N-body simulations (CSIBORG) produced using the Bayesian Origin Reconstruction from Galaxies algorithm. Marginalizing over uncertainties in this reconstruction, small-scale structure, and parameters describing astrophysical contributions to the observed gamma-ray sky, we compare to observations from the Fermi Large Area Telescope to constrain dark matter annihilation cross sections and decay rates through a Markov chain Monte Carlo analysis. We rule out the thermal relic cross section for s-wave annihilation for all m χ ≲ 7 GeV=c 2 at 95% confidence if the annihilation produces gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma-ray sky with the same spatial distribution as dark matter decay at 3.3σ. Although this could be due to dark matter decay via these channels with a decay rate Γ ≈ 6 × 10 −28 s −1 , we find that a power-law spectrum of index p ¼ −2.75 þ0.71 −0.46 , likely of baryonic origin, is preferred by the data.
We present a set of maps classifying regions of the sky according to their information gain potential as quantified by Fisher information. These maps can guide the optimal retrieval of relevant physical information with targeted cosmological searches. Specifically, we calculated the response of observed cosmic structures to perturbative changes in the cosmological model and we charted their respective contributions to Fisher information. Our physical forward-modeling machinery transcends the limitations of contemporary analyses based on statistical summaries to yield detailed characterizations of individual 3D structures. We demonstrate this advantage using galaxy counts data and we showcase the potential of our approach by studying the information gain of the Coma cluster. We find that regions in the vicinity of the filaments and cluster core, where mass accretion ensues from gravitational infall, are the most informative with regard to our physical model of structure formation in the Universe. Hence, collecting data in those regions would be most optimal for testing our model predictions. The results presented in this work are the first of their kind to elucidate the inhomogeneous distribution of cosmological information in the Universe. This study paves a new way forward for the performance of efficient targeted searches for the fundamental physics of the Universe, where search strategies are progressively refined with new cosmological data sets within an active learning framework.
The viral load of patients infected with SARS-CoV-2 varies on logarithmic scales and possibly with age. Controversial claims have been made in the literature regarding whether the viral load distribution actually depends on the age of the patients. Such a dependence would have implications for the COVID-19 spreading mechanism, the age-dependent immune system reaction, and thus for policymaking. We hereby develop a method to analyze viral-load distribution data as a function of the patients’ age within a flexible, non-parametric, hierarchical, Bayesian, and causal model. The causal nature of the developed reconstruction additionally allows to test for bias in the data. This could be due to, e.g., bias in patient-testing and data collection or systematic errors in the measurement of the viral load. We perform these tests by calculating the Bayesian evidence for each implied possible causal direction. The possibility of testing for bias in data collection and identifying causal directions can be very useful in other contexts as well. For this reason we make our model freely available. When applied to publicly available age and SARS-CoV-2 viral load data, we find a statistically significant increase in the viral load with age, but only for one of the two analyzed datasets. If we consider this dataset, and based on the current understanding of viral load’s impact on patients’ infectivity, we expect a non-negligible difference in the infectivity of different age groups. This difference is nonetheless too small to justify considering any age group as noninfectious.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.