Legionella pneumophila is an environmental bacterium, an opportunistic premise plumbing pathogen that causes the Legionnaires’ disease. L. pneumophila presents a serious health hazard in building water systems, due to its high resistance to standard water disinfection methods. Our aim was to study the use of photodynamic inactivation (PDI) against Legionella. We investigated and compared the photobactericidal potential of five cationic dyes. We tested toluidine blue (TBO) and methylene blue (MB), and three 3-N-methylpyridylporphyrins, one tetra-cationic and two tri-cationic, one with a short (CH3) and the other with a long (C17H35) alkyl chain, against L. pneumophila in tap water and after irradiation with violet light. All tested dyes demonstrated a certain dark toxicity against L. pneumophila; porphyrins with lower minimal effective concentration (MEC) values than TBO and MB. Nanomolar MEC values, significantly lower than with TBO and MB, were obtained with all three porphyrins in PDI experiments, with amphiphilic porphyrin demonstrating the highest PDI activity. All tested dyes showed increasing PDI with longer irradiation (0–108 J/cm2), especially the two hydrophilic porphyrins. All three porphyrins caused significant changes in cell membrane permeability after irradiation and L. pneumophila, co-cultivated with Acanthamoeba castellanii after treatment with all three porphyrins and irradiation, did not recover in amoeba. We believe our results indicate the considerable potential of cationic porphyrins as effective anti-Legionella agents.
The bacterium Legionella pneumophila is still one of the probable causes of waterborne diseases, causing serious respiratory illnesses. In the aquatic systems, L. pneumophila exists inside free-living amoebae or can form biofilms. Currently developed disinfection methods are not sufficient for complete eradication of L. pneumophila biofilms in water systems of interest. Photodynamic inactivation (PDI) is a method that results in an antimicrobial effect by using a combination of light and a photosensitizer (PS). In this work, the effect of PDI in waters of natural origin and of different hardness, as a treatment against L. pneumophila biofilm, was investigated. Three cationic tripyridylporphyrins, which were previously described as efficient agents against L. pneumophila alone, were used as PSs. We studied how differences in water hardness affect the PSs’ stability, the production of singlet oxygen, and the PDI activity on L. pneumophila adhesion and biofilm formation and in biofilm destruction. Amphiphilic porphyrin showed a stronger tendency for aggregation in hard and soft water, but its production of singlet oxygen was higher in comparison to tri- and tetracationic hydrophilic porphyrins that were stable in all water samples. All three studied porphyrins were shown to be effective as PDI agents against the adhesion of the L. pneumophila to polystyrene, against biofilm formation, and in the destruction of the formed biofilm, in their micromolar concentrations. However, a higher number of dissolved ions, i.e., water hardness, generally reduced somewhat the PDI activity of all the porphyrins at all tested biofilm growth stages.
Legionella is an opportunistic premise plumbing pathogen that can be present in municipal and other water supplies. Building water systems may provide conditions (such as low flow, water hardness, low disinfectant residual levels and optimal temperature) that accelerate Legionella growth to levels that may result in an increased risk to public health. The standard disinfection of water systems (periodic overheating of water and chlorination) in the interest of prevention of Legionnaires' disease have often proved to be inefficient. It is therefore necessary to develop new approaches for removing Legionella from water systems. One of the new methods is antimicrobial photodynamic therapy (aPDT), which includes the combined activity of a photosensitizer (PS), molecular oxygen and visible light of appropriate wavelength to create singlet oxygen (1O2) and other oxygen reactive species (ROS) leading to the oxidation of numerous cellular components and cell death. In this study, a newly synthesized cationic, amphiphilic porphyrin TMPyP3-C17H35, was tested against Legionella in tap water. The minimal effective concentration (MEC) of PS photoinactivation test and PS uptake assay in sterile tap water were explored to determine the anti-Legionella activity. The complete inactivation of Legionella in sterile tap water was achieved with 0.024 μM of the PS. Also, the tested PS was found to be very effective in reducing Legionella growth in the sterile tap water and photoinactivation was dose-dependent. The tested PS binds well to the bacterial cell, after only 10 minutes of incubation in the dark. In conclusion, these studies indicate that TMPyP3-C17H35 is highly efficient in aPDT which leads to reducing Legionella growth in sterile tap water, and these results suggest that cationic amphiphilic photosensitizers may have a broader application in the photoinactivation of bacterial cells implicated in water disinfection.
Honey is a natural food consisting mainly of sugars, enzymes, amino acids, organic acids, vitamins, minerals and aromatic substances. In addition to specific organoleptic properties, honey also has other components that contribute to its nutritional and health value. Proteins, vitamins, minerals, organic acids and phenolic compounds, the most variable components of honey, are predominantly responsible for its strong bioactive effect. Honeydew honey is a less known type of honey with outstanding antimicrobial and antioxidant properties that also demonstrates prebiotic effects and can promote the growth of probiotic bacteria. Foodborne illnesses can be prevented by using probiotic strains in combination with prebiotics. The aim of this study was for the first time to determine potential synergistic antimicrobial effect of fir (Abies alba Mill.) honeydew honey (HS) and probiotic bacteria Lactiplantibacillus plantarum on Salmonella enterica serotype Typhimurium, a primary cause of foodborne illnesses. The effect of three different samples of fir honeydew honey on the growth of L. plantarum in de Man, Rogosa and Sharpe (MRS) medium and the potential synergistic effect of HSs and L. plantarum on the growth of S. Typhimurium in the Brain Heart Infusion (BHI) medium were examined. The results indicate that concentrations of 1 and 5% of all three HS samples stimulate the growth and metabolic activity of L. plantarum, while a concentration of 10% inhibits the growth of L. plantarum. The concentration of 5% of all three HS and L. plantarum combined inhibits the growth of S. Typhimurium in BHI broth. Fir honeydew honey showed potential prebiotic properties and antimicrobial activity, both of which can synergistically enhance the probiotic efficacy of L. plantarum against S. Typhimurium To conclude, the combination of fir honeydew honey and L. plantarum represents a successful combination against S. Typhimurium and additional experiments are necessary regarding the mechanisms of their combined effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.