Image segmentation and segmentation of geometry are one of the basic requirements for reverse engineering, shape synthesis, and shape optimization. In terms of shape optimization and shape synthesis where the original geometry should be faithfully replaced with some mathematical parametric model (NURBS, hierarchical NURBS, T-Spline, …) segmentation of geometry may be done directly on 3D geometry and its corresponding parametric values in the 2D parametric domain. In our approach, we are focused on segmentation of 2D parametric domain as an image instead of 3D geometry. The reason for this lies in our dynamic hierarchical parametric model, which controls the results of various operators from image processing applied to the parametric domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.