Klebsiella pneumoniae (phylogroup Kp1), one of the most problematic pathogens associated with antibiotic resistance worldwide, is phylogenetically closely related to K. quasipneumoniae [subsp. quasipneumoniae (Kp2) and subsp. similipneumoniae (Kp4)], K. variicola (Kp3) and two unnamed phylogroups (Kp5 and Kp6). Together, Kp1 to Kp6 make-up the K. pneumoniae complex. Currently, the phylogroups can be reliably identified only based on gene (or genome) sequencing. Misidentification using standard laboratory methods is common and consequently, the clinical significance of K. pneumoniae complex members is imprecisely defined. Here, we evaluated and validated the potential of MALDI-TOF mass spectrometry (MS) to discriminate K. pneumoniae complex members. We detected mass spectrometry biomarkers associated with the phylogroups, with a sensitivity and specificity ranging between 80–100% and 97–100%, respectively. Strains within phylogroups Kp1, Kp2, Kp4, and Kp5 each shared two specific peaks not observed in other phylogroups. Kp3 strains shared a peak that was only observed otherwise in Kp5. Finally, Kp6 had a diagnostic peak shared only with Kp1. Kp3 and Kp6 could therefore be identified by exclusion criteria (lacking Kp5 and Kp1-specific peaks, respectively). Further, ranked Pearson correlation clustering of spectra grouped strains according to their phylogroup. The model was tested and successfully validated using different culture media. These results demonstrate the potential of MALDI-TOF MS for precise identification of K. pneumoniae complex members. Incorporation of spectra of all K. pneumoniae complex members into reference MALDI-TOF spectra databases, in which they are currently lacking, is desirable. MALDI-TOF MS may thereby enable a better understanding of the epidemiology, ecology, and pathogenesis of members of the K. pneumoniae complex.
Background: Klebsiella pneumoniae (hereafter, Kp) is a major public health threat responsible for high levels of multidrug resistant (MDR) human infections. Besides, Kp also causes severe infections in the community, especially in Asia and Africa. Although most Kp infections are caused by endogenous intestinal carriage, little is known about the prevalence and microbiological characteristics of Kp in asymptomatic human carriage, and attached risk factors including environmental sources exposure. Methods: Here, 911 pregnant women from communities in Madagascar, Cambodia, and Senegal were screened for gut colonization by Kp. Characteristics of Kp strains (antimicrobial susceptibility, genomic diversity, virulence, and resistance genes) were defined, and associated risk factors were investigated. Results: Kp carriage rate was 55.9%, and Kp populations were highly heterogeneous (6 phylogroups, 325 sequence types, Simpson index 99.6%). One third of Kp isolates had acquired antimicrobial resistance genes. MDR-Kp (11.7% to 39.7%) and extended spectrum beta-lactamase (ESBL)-producing Kp (0.7% to 14.7%) varied among countries. Isolates with virulence genes were detected (14.5%). Environmental exposure factors including food, animal contacts, or hospitalization of household members were associated with carriage of Kp, antimicrobial resistance and hypervirulence. However, risk factors were countryspecific and Kp subpopulation-specific. Conclusion: This large-scale multicenter study uncovers the huge diversity of Kp in human gut carriage, demonstrates that antimicrobial resistance is widespread in communities of three lowincome countries, and underlines the challenges posed by Kp colonization to the control of antimicrobial resistance.
Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control.
The bacterial pathogen Klebsiella pneumoniae comprises several phylogenetic groups (Kp1 to Kp7), two of which (Kp5 and Kp7) have no taxonomic status. Here we show that group Kp5 is closely related to Klebsiella variicola (Kp3), with an average nucleotide identity (ANI) of 96.4%, and that group Kp7 has an ANI of 94.7% with Kp1 (K. pneumoniae sensu stricto). Biochemical characteristics and chromosomal beta-lactamase genes also distinguish groups Kp5 and Kp7 from other Klebsiella taxa. We propose the names K. africanensis for Kp7 (type strain, 200023T) and K. variicola subsp. tropicalensis for Kp5 (type strain, 1266T).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.