The review demonstrated the interest of researchers in exploring the Learning Healthcare System ideas. However, it also revealed minimal focus on evaluating the impact of the novel paradigm on both healthcare service delivery and patient outcome.
SummaryObjective: To perform a review of recent research in clinical data reuse or secondary use, and envision future advances in this field. Methods: The review is based on a large literature search in MEDLINE (through PubMed), conference proceedings, and the ACM Digital Library, focusing only on research published between 2005 and early 2016. Each selected publication was reviewed by the authors, and a structured analysis and summarization of its content was developed. Results: The initial search produced 359 publications, reduced after a manual examination of abstracts and full publications. The following aspects of clinical data reuse are discussed: motivations and challenges, privacy and ethical concerns, data integration and interoperability, data models and terminologies, unstructured data reuse, structured data mining, clinical practice and research integration, and examples of clinical data reuse (quality measurement and learning healthcare systems). Conclusion: Reuse of clinical data is a fast-growing field recognized as essential to realize the potentials for high quality healthcare, improved healthcare management, reduced healthcare costs, population health management, and effective clinical research.
Electronic health records (EHR) contain a lot of valuable information about individual patients and the whole population. Besides structured data, unstructured data in EHRs can provide extra, valuable information but the analytics processes are complex, time‐consuming, and often require excessive manual effort. Among unstructured data, clinical text and images are the two most popular and important sources of information. Advanced statistical algorithms in natural language processing, machine learning, deep learning, and radiomics have increasingly been used for analyzing clinical text and images. Although there exist many challenges that have not been fully addressed, which can hinder the use of unstructured data, there are clear opportunities for well‐designed diagnosis and decision support tools that efficiently incorporate both structured and unstructured data for extracting useful information and provide better outcomes. However, access to clinical data is still very restricted due to data sensitivity and ethical issues. Data quality is also an important challenge in which methods for improving data completeness, conformity and plausibility are needed. Further, generalizing and explaining the result of machine learning models are important problems for healthcare, and these are open challenges. A possible solution to improve data quality and accessibility of unstructured data is developing machine learning methods that can generate clinically relevant synthetic data, and accelerating further research on privacy preserving techniques such as deidentification and pseudonymization of clinical text. This article is categorized under: Applications of Computational Statistics > Health and Medical Data/Informatics
Few surveys have a structured assessment of educational outcome. Telementoring has improved impact on surgical education. Reported complication rate was 5%.
Background Electronic health (eHealth) services may help people obtain information and manage their health, and they are gaining attention as technology improves, and as traditional health services are placed under increasing strain. We present findings from the first representative, large-scale, population-based study of eHealth use in Norway. Objective The objectives of this study were to examine the use of eHealth in a population above 40 years of age, the predictors of eHealth use, and the predictors of taking action following the use of these eHealth services. Methods Data were collected through a questionnaire given to participants in the seventh survey of the Tromsø Study (Tromsø 7). The study involved a representative sample of the Norwegian population aged above 40 years old. A subset of the more extensive questionnaire was explicitly related to eHealth use. Data were analyzed using logistic regression analyses. Results Approximately half (52.7%; 9752/18,497) of the respondents had used some form of eHealth services during the last year. About 58% (5624/9698) of the participants who had responded to a question about taking some type of action based on information gained from using eHealth services had done so. The variables of being a woman (OR 1.58; 95% CI 1.47-1.68), of younger age (40-49 year age group: OR 4.28, 95% CI 3.63-5.04), with a higher education (tertiary/long: OR 3.77, 95% CI 3.40-4.19), and a higher income (>1 million kr [US $100,000]: OR 2.19, 95% CI 1.77-2.70) all positively predicted the use of eHealth services. Not living with a spouse (OR 1.14, 95% CI 1.04-1.25), having seen a general practitioner (GP) in the last year (OR 1.66, 95% CI 1.53-1.80), and having had some disease (such as heart disease, cancer, asthma, etc; OR 1.29, 95% CI 1.18-1.41) also positively predicted eHealth use. Self-rated health status did not significantly influence eHealth use. Taking some action following eHealth use was predicted with the variables of being a woman (OR 1.16, 95% CI 1.07-1.27), being younger (40-49 year age group: OR 1.72, 95% CI 1.34-2.22), having a higher education (tertiary/long: OR 1.65, 95% CI 1.42-1.92), having seen a GP in the last year (OR 1.58, 95% CI 1.41-1.77), and having ever had a disease (such as heart disease, cancer or asthma; OR 1.26, 95% CI 1.14-1.39). Conclusions eHealth appears to be an essential supplement to traditional health services for those aged above 40 years old, and especially so for the more resourceful. Being a woman, being younger, having higher education, having had a disease, and having seen a GP in the last year all positively predicted using the internet to get health information and taking some action based on this information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.