Photosynthesis powers life on our planet. The basic photosynthetic architecture consists of antenna complexes that harvest solar energy and reaction centres that convert the energy into stable separated charge. In oxygenic photosynthesis, the initial charge separation occurs in the photosystem II reaction centre, the only known natural enzyme that uses solar energy to split water. Both energy transfer and charge separation in photosynthesis are rapid events with high quantum efficiencies. In recent nonlinear spectroscopic experiments, long-lived coherences have been observed in photosynthetic antenna complexes, and theoretical work suggests that they reflect underlying electronic-vibrational resonances, which may play a functional role in enhancing energy transfer. Here, we report the observation of coherent dynamics persisting on a picosecond timescale at 77 K in the photosystem II reaction centre using two-dimensional electronic spectroscopy. Supporting simulations suggest that the coherences are of a mixed electronic-vibrational (vibronic) nature and may enhance the rate of charge separation in oxygenic photosynthesis.
The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of 'burning out' the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at ∼700 nm, with the partial mixing of excitonic and chlorophyll-chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.