. However, as a neutron is neutral, it does not detect charge but rather its associated lattice distortion 7 , so it is not known whether the stripes involve ordering of the doped holes. Here we present a study of the charge order in LBCO with resonant soft X-ray scattering (RSXS). We observe giant resonances near the Fermi level as well as near the correlated gap 8,9 , demonstrating significant modulation in both the doped-hole density and the 'Mottness', or the degree to which the system resembles a Mott insulator 10 . The peak-to-trough amplitude of the valence modulation is estimated to be 0.063 holes, which suggests 11 an integrated area of 0.59 holes under a single stripe, close to the expected 0.5 for half-filled stripes.The charge/spin superstructure in LNSCO 5 and LBCO 6 appears only in the low-temperature tetragonal (LTT) phase, is most stable at x = 1/8 and coincides with an anomalous suppression of the critical temperature T c (ref. 12). This phase is frequently interpreted as (quasi) static stripes that have been pinned by the LTT distortion. The charge reflections observed with neutron scattering are weak (∼6 times less intense than the magnetic reflections) as neutrons only detect the lattice distortion, which was estimated to be only about 0.004Å (ref. 7). However, one assumes that the hole modulation itself is significant. We point out, however, that the spin-density wave in elemental Cr also exhibits half-wavelength charge reflections that are weaker by about a factor of 4.1 and represent a distortion of similar size 13 . So, in the neutron Bragg peaks alone there is no clear difference between the phenomenon in LNSCO and a simple spin-density wave. To determine whether the doped holes are actually involved we have studied LBCO with RSXS near the O K (1s → 2p) and Cu L 3/2 (2p 3/2 → 3d x2−y2 ) edges, which provide direct sensitivity to valence electron ordering [14][15][16][17][18][19][20] .Single crystals of La 2−x Ba x CuO 4 with x = 1/8 were grown by the floating-zone method 21 . The sample used in this study had T c = 2.5 K indicating suppressed superconductivity and stabilized spin/charge order. The sample was cleaved in air revealing a surface with (0,0,1) orientation. RSXS measurements were performed on beam line X1B at the National Synchrotron Light Source, Brookhaven, using a 10-axis, ultrahigh-vacuumcompatible diffractometer. The sample was cooled with a He flow cryostat connected through Cu braids, providing a base temperature of 18 K. X-ray absorption spectra (XAS) were measured in situ in fluorescence yield mode at the O K and Cu L 3/2 edges and found to be consistent with previous studies 8 (see Figs 1, 3a). We will denote reciprocal space with Miller indices (H,K,L), which represent a momentum transfer Q = (2π/a H,2π/b K,2π/c L) where a = b = 3.788Å, c = 13.23Å. The incident X-ray polarization depends on Q but was approximately 60 • from the Cu-O bond for measurements at both edges.The O K XAS in the cuprates exhibits a mobile carrier peak (MCP) at 528.6 eV, corresponding to tran...
There are many electronic and magnetic properties exhibited by complex oxides. Electronic phase separation (EPs) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety of new and unusual electronic phases at the interfaces between complex oxides, in particular between two non-magnetic insulators LaAlo 3 and srTio 3 , have stimulated the oxide community. However, no EPs has been observed in this system despite a theoretical prediction. Here, we report an EPs state at the LaAlo 3 /srTio 3 interface, where the interface charges are separated into regions of a quasi-two-dimensional electron gas, a ferromagnetic phase, which persists above room temperature, and a (superconductor like) diamagnetic/paramagnetic phase below 60 K. The EPs is due to the selective occupancy (in the form of 2D-nanoscopic metallic droplets) of interface sub-bands of the nearly degenerate Ti orbital in the srTio 3 . The observation of this EPs demonstrates the electronic and magnetic phenomena that can emerge at the interface between complex oxides mediated by the Ti orbital.
Determining the nature of the electronic phases that compete with superconductivity in high-transition-temperature (high-T(c)) superconductors is one of the deepest problems in condensed matter physics. One candidate is the 'stripe' phase, in which the charge carriers (holes) condense into rivers of charge that separate regions of antiferromagnetism. A related but lesser known system is the 'spin ladder', which consists of two coupled chains of magnetic ions forming an array of rungs. A doped ladder can be thought of as a high-T(c) material with lower dimensionality, and has been predicted to exhibit both superconductivity and an insulating 'hole crystal' phase in which the carriers are localized through many-body interactions. The competition between the two resembles that believed to operate between stripes and superconductivity in high-T(c) materials. Here we report the existence of a hole crystal in the doped spin ladder of Sr14Cu24O41 using a resonant X-ray scattering technique. This phase exists without a detectable distortion in the structural lattice, indicating that it arises from many-body electronic effects. Our measurements confirm theoretical predictions, and support the picture that proximity to charge ordered states is a general property of superconductivity in copper oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.