We conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings. Each protocol was administered to approximately half of 125 samples that comprised 15,305 participants from 36 countries and territories. Using the conventional criterion of statistical significance ( p < .05), we found that 15 (54%) of the replications provided evidence of a statistically significant effect in the same direction as the original finding. With a strict significance criterion ( p < .0001), 14 (50%) of the replications still provided such evidence, a reflection of the extremely high-powered design. Seven (25%) of the replications yielded effect sizes larger than the original ones, and 21 (75%) yielded effect sizes smaller than the original ones. The median comparable Cohen’s ds were 0.60 for the original findings and 0.15 for the replications. The effect sizes were small (< 0.20) in 16 of the replications (57%), and 9 effects (32%) were in the direction opposite the direction of the original effect. Across settings, the Q statistic indicated significant heterogeneity in 11 (39%) of the replication effects, and most of those were among the findings with the largest overall effect sizes; only 1 effect that was near zero in the aggregate showed significant heterogeneity according to this measure. Only 1 effect had a tau value greater than .20, an indication of moderate heterogeneity. Eight others had tau values near or slightly above .10, an indication of slight heterogeneity. Moderation tests indicated that very little heterogeneity was attributable to the order in which the tasks were performed or whether the tasks were administered in lab versus online. Exploratory comparisons revealed little heterogeneity between Western, educated, industrialized, rich, and democratic (WEIRD) cultures and less WEIRD cultures (i.e., cultures with relatively high and low WEIRDness scores, respectively). Cumulatively, variability in the observed effect sizes was attributable more to the effect being studied than to the sample or setting in which it was studied.
We conducted preregistered replications of 28 classic and contemporary published findings with protocols that were peer reviewed in advance to examine variation in effect magnitudes across sample and setting. Each protocol was administered to approximately half of 125 samples and 15,305 total participants from 36 countries and territories. Using conventional statistical significance (p < .05), fifteen (54%) of the replications provided evidence in the same direction and statistically significant as the original finding. With a strict significance criterion (p < .0001), fourteen (50%) provide such evidence reflecting the extremely high powered design. Seven (25%) of the replications had effect sizes larger than the original finding and 21 (75%) had effect sizes smaller than the original finding. The median comparable Cohen’s d effect sizes for original findings was 0.60 and for replications was 0.15. Sixteen replications (57%) had small effect sizes (< .20) and 9 (32%) were in the opposite direction from the original finding. Across settings, 11 (39%) showed significant heterogeneity using the Q statistic and most of those were among the findings eliciting the largest overall effect sizes; only one effect that was near zero in the aggregate showed significant heterogeneity. Only one effect showed a Tau > 0.20 indicating moderate heterogeneity. Nine others had a Tau near or slightly above 0.10 indicating slight heterogeneity. In moderation tests, very little heterogeneity was attributable to task order, administration in lab versus online, and exploratory WEIRD versus less WEIRD culture comparisons. Cumulatively, variability in observed effect sizes was more attributable to the effect being studied than the sample or setting in which it was studied.
ABSTRACT:Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200 ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words -an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension.2
TEST is a novel taxonomy of knowledge representations based on three distinct hierarchically organized representational features: Tropism, Embodiment, and Situatedness. Tropic representational features reflect constraints of the physical world on the agent's ability to form, reactivate, and enrich embodied (i.e., resulting from the agent's bodily constraints) conceptual representations embedded in situated contexts. The proposed hierarchy entails that representations can, in principle, have tropic features without necessarily having situated and/or embodied features. On the other hand, representations that are situated and/or embodied are likely to be simultaneously tropic. Hence, although we propose tropism as the most general term, the hierarchical relationship between embodiment and situatedness is more on a par, such that the dominance of one component over the other relies on the distinction between offline storage versus online generation as well as on representation-specific properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.