Chitosan is a natural polymer derived from chitin, a structural component of fungi, insects and shrimp, which exerts antimicrobial effects against bacteria and fungi. The aim of this study was to investigate the in vitro antifungal activity of low molecular weight chitosan (LMWC), and the potential synergy between chitosan and a currently used antifungal drug, fluconazole. The in vitro minimal inhibitory concentrations (MICs) of chitosan and fluconazole against 105 clinical Candida isolates were measured by the broth microdilution method. LMWC exhibited a significant antifungal activity, inhibiting over 89.9% of the clinical isolates examined (68.6% of which was completely inhibited). The species included several fluconazole-resistant strains and less susceptible species such as C. glabrata, which was inhibited at a concentration of 4.8 mg/l LMWC. Although some strains were susceptible at pH 7.0, a greater antifungal activity of LMWC was observed at pH 4.0. There was no evidence of a synergistic effect of the combination of LMWC and fluconazole at pH 7.0. This is the first report in which the antifungal activity of LMWC was investigated with clinical Candida strains. The use of LMWC as an antifungal compound opens new therapeutic perspectives, as the low toxicity of LMWC in humans supports its use in new applications in an environment of pH 4.0-4.5, such as a topical agent for vulvovaginal candidiasis.
Artículo de publicación ISIFrom recent studies on bone and shell formation, the importance of polysaccharides in biomineralization processes is gradually being recognized. Through ion-complexation and self-assembly properties, such macromolecules have remarkable effects on mineralization. However, their influences on the different regimes of crystallization including the interactions with precursor species are unclear. The present study therefore addresses calcium carbonate mineralization in the presence of alginates, a class of linear copolymeric saccharides composed of beta-1,4 linked D-mannuronic and L-guluronic acid. During mineralization, this biopolymer is found to exert pH-dependent control over mineralization pathways in terms of the stability of prenucleation dusters, inhibitory effect toward nucleation and initially formed postnucleation products. Remarkably in the presence of this macromolecular additive; either amorphous or crystalline vaterite particles can be selectively nucleated in a pH-dependent manner. This is validated by electron microscopy wherein vaterite particles are intimately associated with alginate assemblies after nucleation at pH 9.75. At lower pH, aggregates, of amorphous particles are formed. Thus, in addition to the general focus on biochemical properties of additives, solution pH, a physiologically fundamental parameter significantly alters the scheme of mineralization.Chilean Council for Science and Technology (CONICYT); CONICYT/DAAD; Program U-Redes, Vice-presidency of Research and Development, University of Chil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.