Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis.
Precise execution of recombination during meiosis is essential for forming chromosomally-balanced gametes. Meiotic recombination initiates with the formation and resection of DNA double-strand breaks (DSBs). Cellular responses to meiotic DSBs are critical for efficient repair and quality control, but molecular features of these remain poorly understood, particularly in mammals. Here we report that the DNA damage response protein kinase ATR is crucial for meiotic recombination and completion of meiotic prophase in mice. Using a hypomorphic Atr mutation and pharmacological inhibition of ATR in vivo and in cultured spermatocytes, we show that ATR, through its effector kinase CHK1, promotes efficient RAD51 and DMC1 assembly at RPA-coated resected DSB sites and establishment of interhomolog connections during meiosis. Furthermore, our findings suggest that ATR promotes local accumulation of recombination markers on unsynapsed axes during meiotic prophase to favor homologous chromosome synapsis. These data reveal that ATR plays multiple roles in mammalian meiotic recombination.
Highlights d A chromosomal inversion of 115 Mbp, 12% of the genome, is found in common quails d Birds with the inversion are darker, heavier, and have rounder wings d These birds do not undertake the characteristic longdistance migration d The sequence in the inversion is highly divergent and originated before speciation
In somatic cells, and are close functional partners in DNA repair and damage response. However, it is not known whether they are also involved in the maintenance of genome integrity in meiosis. By analyzing chromosome dynamics in spermatocytes, we found that the synapsis of autosomes and X-Y chromosomes was impaired in a fraction of cells. Such defects correlated with an abnormal recombination profile. Conversely, was dispensable for the synapsis of the autosomes and played only a minor role in X-Y synapsis, compared with the action of This suggested that those genes have non-overlapping functions in chromosome synapsis. However, we observed that both genes play a similar role in the assembly of MLH3 onto chromosomes, a key step in crossover formation. Moreover, we show that and cooperate in promoting the activation of the recombination-dependent checkpoint, a mechanism that restrains the differentiation of cells with unrepaired DSBs. This occurs by a mechanism that involves P53. Overall, our data show that, in male germ cells, and promote the maintenance of genome integrity.This article has an associated First Person interview with the first author of the paper.
Mammalian female fertility relies on the proper development of follicles. Right after birth in mouse, oocytes associate with somatic ovarian cells to form follicles. These follicles grow during adult lifetime to produce viable gametes. In this study, we analyzed the role of the ATM and rad3-related (ATR) kinase in mouse oogenesis and folliculogenesis using a hypomorphic mutation of the Atr gene (Murga et al., 2009). Female mice homozygote for this allele have been reported to be sterile. Our data show that female meiotic prophase is not grossly altered when ATR levels are reduced. However, follicle development is majorly compromised since Atr mutant ovaries present a decrease of growing follicles. Comprehensive analysis of follicular cell death and proliferation suggest that wild-type levels of ATR are required to achieve optimal follicular development. Altogether, these findings suggest that reduced ATR expression causes sterility due to defects in follicular progression rather than in meiotic recombination. We discuss the implication of these findings for the use of ATR inhibitors as anti-cancer drugs and its possible side effects on female fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.