The tendency to increase the temperature of gases and the desire to extend the service life forces the use of a protective coating on the blade. The publication presents the technology of applying a heat-resistant protective coating onto the jet engine turbine blade by means of plasma thermal spraying, taking into account the process of aluminizing and heat treatment after aluminizing. The paper presents the results of work on the possibilities of shaping the thickness of the protective coating on the blade by changing the parameters of the spraying process, such as spraying distance, amount of hydrogen, amount of argon and the number of torch passes.
One of the most important factors for increasing the durability of turbine engines is the use of turbine blades characterized by the best possible convergence of the thermophysical properties of the protective coating and the base material of the blade. The aim of the research was to evaluate the heat resistance of prototype two-layer protective coatings applied to turbine blades. The inner layer of the coating enables shaping the thermophysical convergence of the coating and the base material of the blade. The outer layer is used for thermal protection of the blade material. The inner layer was applied to the blade by plasma spraying, and the outer layer was diffusion aluminized for the first type by a non-contact gas method, for the second type by a slurry method, and for the third type, the ceramics were plasma sprayed. Turbine blades with prototype coatings were subjected to an engine test, and after the test, macro- and microstructure tests were performed. The tests showed that the prototype protective coating with an inner layer of the MCrAlY type applied to the blade by plasma spraying and an outer layer aluminized by diffusion by a non-contact gas method protects the blade material against oxidation and ensures its thermal insulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.