Small interfering ribonucleic acids (siRNAs) form potentially the most important class of next generation therapeutics. However, achieving their efficient delivery in the correct dose, time and location in the body remains a significant challenge. Rapid developments in the chemistries of siRNA formulations are enabling new strategies to overcome the core obstacles to delivery which include poor ribonuclease (RNase) resistance, short biological half-life, lack of tissue targeting, inefficient cellular uptake and undesirable toxicity. In this review we describe these principal challenges and evaluate recent approaches proposed to overcome the chemical, biochemical and physiological barriers. The role of the specific chemical structure of siRNA is considered and an overview of selected literature-reported siRNA formulations is provided. These include chemically-modified siRNAs and analogues, aptamer-siRNA chimeras, self-assembled nanoparticles, lipid and polymer complexes, bioconjugates and fusion protein complexes. We conclude the review with an outlook for the clinical use of this highly promising, but pharmaceutically challenging biotherapeutic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.