Predictive methods for real‐time flood operation of water systems consisting of reservoirs located in parallel on tributaries to the main river are presented and discussed. The aspect of conflicting individual goals of the local decision units and other objectives important from an overall point of view is taken into account. The particular attention is focused on hierarchical control structure which provides framework for organization of an on‐line reservoir management problem. The important factor involved in flood control the uncertainty with respect to future inflows is taken into consideration. A case study of the upper Vistula river basin system in the southern part of Poland is presented. Simulation results based on 11 historical floods are briefly described and discussed.
This paper presents a controller design process for an aircraft tracking problem when not all states are available. In the study, a nonlinear-transport aircraft simulation model was used and identified through Maximum Likelihood Principle and Extended Kalman Filter. The obtained mathematical model was used to design a Linear–Quadratic Regulator (LQR) with optimal weighting matrices when not all states are measured. The nonlinear aircraft simulation model with LQR controller tracking abilities were analyzed for multiple experiments with various noise levels. It was shown that the designed controller is robust and allows for accurate trajectory tracking. It was found that, in ideal atmospheric conditions, the tracking errors are small, even for unmeasured variables. In wind presence, the tracking errors were proportional to the wind velocity and acceptable for small and moderate disturbances. When turbulence was present in the experiment, state variable oscillations occurred that were proportional to the turbulence intensity and acceptable for small and moderate disturbances.
The issue of energy-aware traffic engineering has become prominent in telecommunications industry in the last years. This paper presents a two-criteria network optimization problem, in which routing and bandwidth allocation are determined jointly, so as to minimize the amount of energy consumed by a telecommunication infrastructure and to satisfy given demands represented by a traffic matrix. A scalarization of the criteria is proposed and the choice of model parameters is discussed in detail. The model of power dissipation as a function of carried traffic in a typical software router is introduced. Then the problem is expressed in a form suitable for the mixed integer quadratic programming (MIQP) solver. The paper is concluded with a set of small, illustrative computational examples. Computed solutions are implemented in a testbed to validate the accuracy of energy consumption models and the correctness of the proposed traffic engineering algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.