CK2 (casein kinase 2) is a very pleiotropic serine/threonine protein kinase whose abnormally high constitutive activity has often been correlated to pathological conditions with special reference to neoplasia. The two most widely used cell permeable CK2 inhibitors, TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), are marketed as quite specific CK2 blockers. In the present study we show, by using a panel of approx. 80 protein kinases, that DMAT and its parent compound TBI (or TBBz; 4,5,6,7-tetrabromo-1H-benzimidazole) are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus)1, PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase 1a). In contrast, TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3. In an attempt to improve selectivity towards CK2 a library of 68 TBB/TBI-related compounds have been tested for their ability to discriminate between CK2, PIM1, HIPK2 and DYRK1a, ending up with seven compounds whose efficacy toward CK2 is markedly higher than that toward the second most inhibited kinase. Two of these, K64 (3,4,5,6,7-pentabromo-1H-indazole) and K66 (1-carboxymethyl-2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole), display an overall selectivity much higher than TBB and DMAT when tested on a panel of 80 kinases and display similar efficacy as inducers of apoptosis.
CK2 denotes a pleiotropic, constitutively active protein kinase whose abnormally high level in many cancer cells is held as an example of "non oncogene addiction". A wide spectrum of cell permeable, fairly specific ATP site-directed CK2 inhibitors are currently available which are proving useful to dissect its biological functions and which share the property of inducing apoptosis of cancer cells with no comparable effect on their "normal" counterparts. One of these, CX-4945, has recently entered clinical trials for the treatment of advanced solid tumors, Castelman's disease and multiple myeloma. The solution of a wide range of 3D structures of inhibitors bound to the catalytic subunits of CK2 reveals that their efficacy substantially relies on hydrophobic interactions within a cavity which is smaller than in other protein kinases. Accordingly the potency of tetra-halogenated benzimidazoles increases upon replacement of chlorine by bromine and, even more, by iodine, and decreases if two unique bulky side chains on CK2 (Val66 and Ile174) are mutated to alanines. Many CK2 inhibitors have been tested on a panel of more than 60 kinases providing Promiscuity Scores useful to evaluate their selectivity, the lowest value (9.47), denoting highest selectivity, being displayed by quinalizarin. The observation that CK2 inhibitors with medium/high promiscuity scores share the ability to inhibit a group of protein kinases as effectively as CK2 discloses the possibility of using their scaffolds for the rational development of selective inhibitors of these kinases, with special reference to PIMs, DYRKs, HIPK2, PKD and ERK8.
It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25 Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.
a b s t r a c tA series of novel iodinated benzimidazoles have been prepared by iodination of respective benzimidazole with iodine and periodic acid in sulfuric acid solution. Additionally several 2-substituted-and N-1-carboxymethyl-substituted derivatives of 4,5,6,7-tetraiodobenzimidazole (TIBI) were obtained. For sake of comparison, some new 4,5,6,7-tetrabromobenzimidazoles were also synthesized. The ability of the new compounds to inhibit protein kinase CK2 has been evaluated. The results show that 4,5,6,7-tetraiodobenzimidazoles are more powerful inhibitors of CK2 than their tetrabrominated analogs. Molecular modeling supports the experimental data showing that tetraiodobenzimidazole moiety fills better the binding pocket than respective tetrabromo and tetrachlorocompounds. To note that 4,5,6,7-tetraiodobenzimidazole (TIBI) is one of the most efficient CK2 inhibitors (K i = 23 nM) described to date.
A series of novel thiazolidin-4-ones bearing a lipophilic adamantyl substituent at position 2 or 3 were synthesized. A majority of them showed a modest anti-HIV-1 activity, whereas 2-adamantan-1-yl-3-(4,6-dimethylpyrimidin-2-yl)-thiazolidin-4-one (8) was endowed with a remarkable antiviral potency (EC(50)=0.67 microM). The new series of compounds (22-29) with an adamantyl moiety at the 3-position of the thiazolidinone ring showed good to modest anti-HIV-1 activity (EC(50)=1.0-11 microM) but also pronounced cytostatic activity. For example 24, 26 and 29 showed an EC(50) of 1.0-2.0 microM, while the 50% effective concentrations for 23 and 28 were 7.8 and 11.0 microM, respectively. X-ray studies and quantum chemical calculations revealed that the anti-HIV activity of the compounds strongly depends on their dipole moments and conformation of the thiazolidinones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.