Abstract. In the paper the problems of practical stability and asymptotic stability of fractional discrete-time linear systems are addressed. Necessary and sufficient conditions for practical stability and for asymptotic stability are established. The conditions are given in terms of eigenvalues of the state matrix of the system. In particular, it is shown that (similarly as in the case of fractional continuous-time linear systems) in the complex plane exists such a region, that location of all eigenvalues of the state matrix in this region is necessary and sufficient for asymptotic stability. The parametric description of boundary of this region is given. Moreover, it is shown that Schur stability of the state matrix (all eigenvalues have absolute values less than 1) is not necessary nor sufficient for asymptotic stability of the fractional discrete-time system. The considerations are illustrated by numerical examples.
Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.
Practical and asymptotic stability of fractional discrete-time scalar systems described by a new model ANDRZEJ RUSZEWSKIThe stability problems of fractional discrete-time linear scalar systems described by the new model are considered. Using the classical D-partition method, the necessary and sufficient conditions for practical stability and asymptotic stability are given. The considerations are il-lustrated by numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.