The notion of a Carleson measure was introduced by Lennart Carleson in his proof of the Corona Theorem for H ∞ (D). In this paper we will define it for certain type of reproducing kernel Hilbert spaces of analytic functions of the complex half-plane, C+, which will include Hardy, Bergman and Dirichlet spaces. We will obtain several necessary or sufficient conditions for a positive Borel measure to be Carleson by preforming tests on reproducing kernels, weighted Bergman kernels, and studying the tree model obtained from a decomposition of the complex half-plane. The Dirichlet space will be investigated in detail as a special case. Finally, we will present a control theory application of Carleson measures in determining admissibility of controls in well-posed linear evolution equations. Mathematics Subject Classification (2010). Primary 30H25, 93B28; Secondary 28E99, 30H10, 30H20, 46C15, 93B05.
Abstract. It follows, from a generalised version of Paley-Wiener theorem, that the Laplace transform is an isometry between certain spaces of weighted L 2 functions defined on (0,∞) and (Hilbert) spaces of analytic functions on the right complex half-plane (for example Hardy, Bergman or Dirichlet spaces). We can use this fact to investigate properties of multipliers and multiplication operators on the latter type of spaces. In this paper we present a full characterisation of multipliers in terms of a generalised concept of a Carleson measure. Under certain conditions, these spaces of analytic functions are not only Hilbert spaces but also Banach algebras, and are therefore contained within their spaces of multipliers. We provide some necessary as well as sufficient conditions for this to happen and look at its consequences.Mathematics subject classification (2010): Primary 30H50, 46J15, 47B99; Secondary 46E22, 46J20.
In this paper we will show how the boundedness condition for the weighted composition operators on a class of spaces of analytic functions on the open right complex half-plane called Zen spaces (which include the Hardy spaces and weighted Bergman spaces) can be stated in terms of Carleson measures and Bergman kernels. In Hilbertian setting we will also show how the norms of causal weighted composition operators on these spaces are related to each other and use it to show that an (unweighted) composition operator C ϕ is bounded on a Zen space if and only if ϕ has a finite angular derivative at infinity. Finally, we will show that there is no compact composition operator on Zen spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.