Prostaglandins (PGs), bioactive lipid molecules produced by cyclooxygenase enzymes (COX-1 and COX-2), have diverse biological activities, including growth-promoting actions on gastrointestinal mucosa. They are also implicated in the growth of colonic polyps and cancers. However, the precise mechanisms of these trophic actions of PGs remain unclear. As activation of the epidermal growth factor receptor (EGFR) triggers mitogenic signaling in gastrointestinal mucosa, and its expression is also upregulated in colonic cancers and most neoplasms, we investigated whether PGs transactivate EGFR. Here we provide evidence that prostaglandin E2 (PGE2) rapidly phosphorylates EGFR and triggers the extracellular signal-regulated kinase 2 (ERK2)--mitogenic signaling pathway in normal gastric epithelial (RGM1) and colon cancer (Caco-2, LoVo and HT-29) cell lines. Inactivation of EGFR kinase with selective inhibitors significantly reduces PGE2-induced ERK2 activation, c-fos mRNA expression and cell proliferation. Inhibition of matrix metalloproteinases (MMPs), transforming growth factor-alpha (TGF-alpha) or c-Src blocked PGE2-mediated EGFR transactivation and downstream signaling indicating that PGE2-induced EGFR transactivation involves signaling transduced via TGF-alpha, an EGFR ligand, likely released by c-Src-activated MMP(s). Our findings that PGE2 transactivates EGFR reveal a previously unknown mechanism by which PGE2 mediates trophic actions resulting in gastric and intestinal hypertrophy as well as growth of colonic polyps and cancers.
Angiogenesis, the formation of new capillary blood vessels, is essential not only for the growth and metastasis of solid tumors, but also for wound and ulcer healing, because without the restoration of blood flow, oxygen and nutrients cannot be delivered to the healing site. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, indomethacin and ibuprofen are the most widely used drugs for pain, arthritis, cardiovascular diseases and, more recently, the prevention of colon cancer and Alzheimer disease. However, NSAIDs produce gastroduodenal ulcers in about 25% of users (often with bleeding and/or perforations) and delay ulcer healing, presumably by blocking prostaglandin synthesis from cyclooxygenase (COX)-1 and COX-2 (ref. 10). The hypothesis that the gastrointestinal side effects of NSAIDs result from inhibition of COX-1, but not COX-2 (ref. 11), prompted the development of NSAIDs that selectively inhibit only COX-2 (such as celecoxib and rofecoxib). Our study demonstrates that both selective and nonselective NSAIDs inhibit angiogenesis through direct effects on endothelial cells. We also show that this action involves inhibition of mitogen-activated protein (MAP) kinase (ERK2) activity, interference with ERK nuclear translocation, is independent of protein kinase C and has prostaglandin-dependent and prostaglandin-independent components. Finally, we show that both COX-1 and COX-2 are important for the regulation of angiogenesis. These findings challenge the premise that selective COX-2 inhibitors will not affect the gastrointestinal tract and ulcer/wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.