Inkjet printing is an excellent printing technique and an attractive alternative to conventional technologies for the production of flexible, low-cost microelectronic devices. Among many parameters that have a significant impact on the correctness of the printing process, the most important is ink viscosity. During the printing process, the ink is influenced by different strains and forces, which significantly change the printing results. The authors present a model and calculations referring to the shear rate of ink in an inkjet printer nozzle. Supporting experiments were conducted, proving the model assumptions for two different ink formulations: initial ink and with the addition of a dispersing agent. The most important findings are summarized by the process window regime of parameters, which is much broader for the inks with a dispersing agent. Such inks exhibit preferable viscosity, better print-ability, and higher path quality with lower resistivity. Presented results allow stating that proper, stable graphene inks adjusted for inkjet technique rheology must contain modifiers such as dispersing agents to be effectively printed.
In this publication, we describe the process of fabrication and the analysis of the properties of nanocomposite filaments based on carbon nanotubes and acrylonitrile butadiene styrene (ABS) polymer for fused deposition modeling (FDM) additive manufacturing. Polymer granulate was mixed and extruded with a filling fraction of 0.99, 1.96, 4.76, 9.09 wt.% of CNTs (carbon nanotubes) to fabricate composite filaments with a diameter of 1.75 mm. Detailed mechanical and electrical investigations of printed test samples were performed. The results demonstrate that CNT content has a significant influence on mechanical properties and electrical conductivity of printed samples. Printed samples obtained from high CNT content composites exhibited an improvement in the tensile strength by 12.6%. Measurements of nanocomposites’ electrical properties exhibited non-linear relation between the supply voltage and measured sample resistivity. This effect can be attributed to the semiconductor nature of the CNT functional phase and the occurrence of a tunnelling effect in percolation network. Detailed I–V characteristics related to the amount of CNTs in the composite and the supply voltage influence are also presented. At a constant voltage value, the average resistivity of the printed elements is 2.5 Ωm for 4.76 wt.% CNT and 0.15 Ωm for 9.09 wt.% CNT, respectively. These results demonstrate that ABS/CNT composites are a promising functional material for FDM additive fabrication of structural elements, but also structural electronics and sensors.
The following paper presents a simple, inexpensive and scalable method of production of carbon nanotube-polyurethane elastomer composite. The new method enables the formation of fibers with 40% w/w of nanotubes in a polymer. Thanks to the 8 times higher content of nanotubes than previously reported for such composites, over an order of magnitude higher electrical conductivity is also observed. The composite fibers are highly elastic and both their electrical and mechanical properties may be easily controlled by changing the nanotubes content in the composite. It is shown that these composite fibers may be easily integrated with traditional textiles by sewing or ironing. However, taking into account their light-weight, high conductivity, flexibility and easiness of molding it may be expected that their potential applications are not limited to the smart textiles industry.
Rapid growth of personal electronics with concurrent research into telerehabilitation solutions discovers opportunities to redefine the future of orthopedic rehabilitation. After joint injury or operation, convalescence includes free active range of movement exercises, such as joints bending and straightening under medical supervision. Flexion detection through wearable textile sensors provides numerous potential benefits such as: (1) reduced cost; (2) continuous monitoring; (3) remote telerehabilitation; (4) gamification; and (5) detection of risk-inducing activities in daily routine. To address this issue, novel piezoresistive multi-walled carbon nanotubes/graphite/styrene–butadiene–styrene copolymer (CNT/Gr/SBS) fiber was developed. The extrusion process allowed adjustable diameter fiber production, while being a scalable, industrially adapted method of manufacturing textile electronics. Composite fibers were highly stretchable, withstanding strains up to 285%, and exhibited exceptional piezoresistive parameters with a gauge factor of 91.64 for 0–100% strain range and 2955 for the full scope. Considering the composite’s flexibility and sensitivity during a series of cyclic loading, it was concluded that developed Gr/CNT/SBS fibers were suitable for application in wearable piezoresistive sensors for telerehabilitation application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.