The skin is a known target organ for the proopiomelanocortin (POMC)-derived neuropeptides alpha-melanocyte stimulating hormone (alpha-MSH), beta-endorphin, and ACTH and also a source of these peptides. Skin expression levels of the POMC gene and POMC/corticotropin releasing hormone (CRH) peptides are not static but are determined by such factors as the physiological changes associated with hair cycle (highest in anagen phase), ultraviolet radiation (UVR) exposure, immune cytokine release, or the presence of cutaneous pathology. Among the cytokines, the proinflammatory interleukin-1 produces important upregulation of cutaneous levels of POMC mRNA, POMC peptides, and MSH receptors; UVR also stimulates expression of all the components of the CRH/POMC system including expression of the corresponding receptors. Molecular characterization of the cutaneous POMC gene shows mRNA forms similar to those found in the pituitary, which are expressed together with shorter variants. The receptors for POMC peptides expressed in the skin are functional and include MC1, MC5 and mu-opiate, although most predominant are those of the MC1 class recognizing MSH and ACTH. Receptors for CRH are also present in the skin. Because expression of, for example, the MC1 receptor is stimulated in a similar dose-dependent manner by UVR, cytokines, MSH peptides or melanin precursors, actions of the ligand peptides represent a stochastic (predictable) nonspecific response to environmental/endogenous stresses. The powerful effects of POMC peptides and probably CRH on the skin pigmentary, immune, and adnexal systems are consistent with stress-neutralizing activity addressed at maintaining skin integrity to restrict disruptions of internal homeostasis. Hence, cutaneous expression of the CRH/POMC system is highly organized, encoding mediators and receptors similar to the hypothalamic-pituitary-adrenal (HPA) axis. This CRH/POMC skin system appears to generate a function analogous to the HPA axis, that in the skin is expressed as a highly localized response which neutralizes noxious stimuli and attendant immune reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.