Therapy targeting tumor blood vessels ought to inhibit tumor growth. However, tumors become refractory to antiangiogenic drugs. Therefore, therapeutic solutions should be sought to address cellular resistance to antiangiogenic therapy. In this regard, reversal of the proangiogenic and immunosuppressive phenotype of cancer cells, and the shift of the tumor microenvironment towards more antiangiogenic and immune-stimulating phenotype may hold some promise. In our study, we sought to validate the effects of a combination therapy aimed at reducing tumor blood vessels, coupled with the abrogation of the immunosuppressive state. To achieve this, we developed an oral DNA vaccine against endoglin. This antigen was carried by an attenuated Salmonella Typhimurium and applied before or after tumor cell inoculation into immunocompetent mice. Our results show that this DNA vaccine effectively inhibited tumor growth, in both the prophylactic and therapeutic settings. It also activated both specific and nonspecific immune responses in immunized mice. Activated cytotoxic T-lymphocytes were directed specifically against endothelial and tumor cells overexpressing endoglin. The DNA vaccine inhibited angiogenesis but did not affect wound healing. In combination with interleukin-12-mediated gene therapy, or with cyclophosphamide administration, the DNA vaccine resulted in reduced microvessel density and lowered the level of T reg lymphocytes in the experimental tumors. This effectively inhibited tumor growth and prolonged survival of the treated animals. Polarization of tumor milieu, from proangiogenic and immunosuppressive, towards an immunostimulatory and antiangiogenic profile represents a promising avenue in anticancer therapy.
The procedure of autologous peripheral blood stem cell transplantation (autoPBSCT) requires cryopreservation of cells in a mixture containing dimethyl sulfoxide (DMSO). DMSO is necessary to secure cell viability, however, its infusion may be toxic to stem cell recipient. The aim of this study was to prospectively evaluate the impact of DMSO concentration on engraftment after autoPBSCT.One-hundred-fifty patients were randomly assigned to one of three study arms; their leukapheresis products were cryopreserved in 10%, 7.5% or 5% DMSO. The study groups did not differ with regard to the diagnosis (mainly lymphomas and multiple myeloma), age, conditioning regimen, and the number of transplanted hematopoietic stem cells. 143 patients were treated with autoPBSCT. The frequency of adverse effects during and shortly after infusion was the lowest in 5% DMSO arm (p = 0.02 compared to 10% DMSO). 4 patients died due to infection before the engraftment. The median time to leukocyte and neutrophil recovery was 10 days in all study groups (p = 0.36 and p = 0.2). As well, the median day of platelet recovery was the same for all DMSO concentrations and equaled 15 days (p = 0.61).In view of these results, 5% DMSO mixture may be considered a new standard in cryopreservation of hematopoietic stem cells.
High-grade serous ovarian carcinoma (HGSOC) is the most frequent histological type of ovarian cancer and the one with worst prognosis. Unfortunately, the majority of established ovarian cancer cell lines which are used in the research have unclear histological origin and probably do not represent HGSOC. Thus, new and reliable models of HGSOC are needed. Ascitic fluid from a patient with recurrent HGSOC was used to establish a stable cancer cell line. Cells were characterized by cytogenetic karyotyping and short tandem repeat (STR) profiling. New generation sequencing was applied to test for hot-spot mutations in 50 cancer-associated genes and fluorescence in situ hybridization (FISH) analysis was used to check for TP53 status. Cells were analyzed for expression of several marker genes/proteins by reverse-transcription polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS), and immunocytochemistry (ICC). Functional tests were performed to compare OVPA8 cells with five commercially available and frequently used ovarian cancer cell lines: SKOV3, A2780, OVCAR3, ES2, and OAW42. Our newly-established OVPA8 cell line shows morphologic and genetic features consistent with HGSOC, such as epithelial morphology, multiple chromosomal aberrations, TP53 mutation, BRCA1 mutation, and loss of one copy of BRCA2. The OVPA8 line has a stable STR profile. Cells are positive for EpCAM, CK19, and CD44; they have relatively low plating efficiency/ability to form spheroids, a low migration rate, and intermediate invasiveness in matrigel, as compared to other ovarian cancer lines. OVPA8 is sensitive to paclitaxel and resistant to cisplatin. We also tested two FGFR inhibitors; OVPA8 cells were resistant to AZD4547 (AstraZeneca, London, UK), but sensitive to the new inhibitor CPL304-110-01 (Celon Pharma, Łomianki/Kiełpin, Poland). We have established and characterized a novel cell line, OVPA8, which can be a valuable preclinical model for studies on high-grade serous ovarian cancer.
The optimal protocol for mobilization of hematopoietic stem cells in patients with lymphoid malignancies has not been determined so far. We retrospectively analyzed the efficacy and safety of Ara-C at a dose of 1.6 g/m 2 compared with CY at a dose of 4.0 g/m 2 , both combined with filgrastim. Seventy and forty-five patients, respectively, were included, among whom 60% were defined as 'predicted poor mobilizers'. The use of Ara-C was associated with significantly higher peak number of circulating CD34þ cells compared with CY (Po0.0001). In the Ara-C group, 95% of patients with multiple myeloma (MM) collected at least 5 Â 10 6 CD34 þ cells/kg required for tandem transplantation, and 97% of lymphoma patients collected at least 2 Â 10 6 CD34 þ cells/kg, needed for a single autologous hematopoietic SCT (autoHSCT), which was achieved with a single leukapheresis in 91% of cases. Results for the CY group were significantly inferior (Po0.0001). No patient mobilized with Ara-C experienced febrile neutropenia, whereas 35% required platelet transfusions. Among patients who proceeded to autoHSCT, the time of both neutrophil and platelet recovery was significantly shorter for those mobilized with Ara-C than CY. We conclude that intermediate-dose Ara-C þ filgrastim is a very effective and relatively safe mobilization protocol for patients with lymphoid malignancies.Bone Marrow Transplantation (2013) 48, 915-921;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.