Voltage-gated potassium channel Kv1.3 is an integral membrane protein, which is selectively permeable for potassium ions and is activated upon a change of membrane potential. Channel activation enables transportation of potassium ions down their electrochemical gradient. Kv1.3 channel is expressed in many cell types, both normal and cancer. Activity of the channel plays an important role in cell proliferation and apoptosis. Inhibition of Kv1.3 channel may be beneficial in therapy of several diseases including some cancer disorders. This review focuses on Kv1.3 channel as a new potentially attractive molecular target in cancer therapy. In the first part, changes in the channel expression in selected cancer disorders are described. Then, the role of the channel activity in cancer cell proliferation and apoptosis is presented. Finally, it is shown that some low molecular weight organic inhibitors of the channel including selected biologically active plant-derived polycyclic compounds may selectively induce apoptosis of Kv1.3-expressing cancer cells while sparing normal cells and healthy organs. These compounds may be promising candidates for putative application in therapy of some cancer disorders, such as melanoma, pancreatic ductal adenocarcinoma (PDAC), or B-type chronic lymphocytic leukemia (B-CLL).
Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced (Adv Clin Exp Med 2015, 24, 3, 517-524).
In the present study, the whole-cell patch-clamp technique was applied to follow the inhibitory effect of genistein--a tyrosine kinase inhibitor and a natural anticancer agent--on the activity of voltage-gated potassium channels Kv1.3 expressed in human T lymphocytes (TL). Obtained data provide evidence that genistein application in the concentration range of 1-80 microM reversibly decreased the whole-cell potassium currents in TL in a concentration-dependent manner to about 0.23 of the control value. The half-blocking concentration range of genistein was from 10 to 40 microM. The current inhibition was correlated in time with a significant decrease of the current activation rate. The steady-state activation of the currents was unchanged upon application of genistein, as was the inactivation rate. The inhibitory effect of genistein on the current amplitude and activation kinetics was voltage-independent. The current inhibition was not changed significantly in the presence of 1 mM of sodium orthovanadate, a tyrosine phosphatase inhibitor. Application of daidzein, an inactive genistein analogue, did not affect significantly either the current amplitudes or the activation kinetics. Possible mechanisms of the observed phenomena and their significance for genistein-induced inhibition of cancer cell proliferation are discussed.
The whole-cell patch-clamp technique was applied to study the modulatory effect of resveratrol on voltage-gated potassium channel Kv1.3 expressed in human lymphocytes. Results demonstrate that application of resveratrol in the concentration range 1-200 muM: inhibited the channel activity in a concentration-dependent manner to about 18% of the control value. The half-blocking concentration of resveratrol was 40.9 microM: , whereas the Hill coefficient was 1.05. The inhibition was time-dependent and slowly reversible. The inhibitory effect of resveratrol was correlated in time with a significant slowing of the current activation, whereas the inactivation rate remained unaffected upon application of resveratrol. The inhibition of Kv1.3 channels was voltage-independent. The steady-state activation of the currents remained unchanged upon resveratrol application. The magnitude of the inhibitory effect of resveratrol was not altered when resveratrol was coapplied with genistein. The possible mechanism of the inhibitory effect and its significance for biological activity of resveratrol are discussed.
The influence of a prenylated flavonoid-6-prenylnaringenin (6-PR) and selected non-prenylated flavonoids: acacetin, chrysin, baicalein, wogonin, and luteolin on the activity of voltage-gated potassium channels Kv1.3 was investigated in human leukemic Jurkat T cells. Electrophysiological measurements were accompanied by studies on the cytotoxic effect of the examined compounds on Jurkat T cells. Electrophysiological studies were performed using the whole-cell patch-clamp technique. Cell viability was determined using the MTT assay. 6-PR inhibited Kv1.3 channels in Jurkat T cells in a concentration-dependent manner. The estimated value of the half-blocking concentration (EC) was about 5.76 µM. Among non-prenylated flavonoids, acacetin and chrysin inhibited Kv1.3 channels in Jurkat T cells when applied at the concentration of 30 µM, whereas baicalein, wogonin, and luteolin were ineffective at this concentration. The inhibitory effects of acacetin and chrysin on Kv1.3 channels were significantly less potent than the inhibition caused by 6-PR. All tested compounds inhibited growth of Jurkat T cells in a concentration-dependent manner. Wogonin and chrysin were the most cytotoxic flavonoids tested, whereas baicalein and 6-PR were the least cytotoxic compounds. In accordance to our hypothesis the prenylated flavonoid (6-PR) was much more effective inhibitor of Kv1.3 channels than non-prenylated compounds selected for this study. The inhibition of Kv1.3 channels by 6-PR, acacetin, and chrysin was not related to cytotoxicity of these compounds. The channels' inhibition might be involved in anti-proliferative and pro-apoptotic effects of 6-PR, acacetin and chrysin observed in cancer cell lines expressing these channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.