We report on the development of algebra in the Mizar system. This includes the construction of formal multivariate power series and polynomials as well as the definition of ideals up to a proof of the Hilbert basis theorem. We present how the algebraic structures are handled and how we inherited the past developments from the Mizar Mathematical Library (MML). The MML evolves and past contributions are revised and generalized. Our work on formal power series caused a number of such revisions. It seems that revising past developments with an intent to generalize them is a necessity when building a database of formalized mathematics. This poses a question: how much generalization is best?
The collection of works for this special issue was inspired by the presentations given at the 2011 AMS Special Session on Formal Mathematics for Mathematicians: Developing Large Repositories of Advanced Mathematics. The issue features a collection of articles by practitioners of formalizing proofs who share a deep interest in making computerized mathematics widely available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.