Platelet concentrates for topical use are innovative tools of regenerative medicine and their effects in various therapeutical situations are hotly debated. Unfortunately, this field of research mainly focused on the platelet growth factors, and the fibrin architecture and the leukocyte content of these products are too often neglected. In the four families of platelet concentrates, 2 families contain significant concentrations of leukocytes: L-PRP (Leukocyte- and Platelet-Rich Plasma) and L-PRF (Leukocyte- and Platelet-Rich Fibrin). The presence of leukocytes has a great impact on the biology of these products, not only because of their immune and antibacterial properties, but also because they are turntables of the wound healing process and the local factor regulation. In this article, the various kinds of leukocytes present in a platelet concentrate are described (particularly the various populations of granulocytes and lymphocytes), and we insist on the large diversity of factors and pathways that these cells can use to defend the wound site against infections and to regulate the healing process. Finally, the impact of these cells in the healing properties of the L-PRP and L-PRF is also discussed: if antimicrobial properties were already pointed out, effects in the regulation of cell proliferation and differentiation were also hypothesized. Leukocytes are key actors of many platelet concentrates, and a better understanding of their effects is an important issue for the development of these technologies.
BackgroundData regarding the association between red cell distribution width (RDW) values and mortality in patients with stable coronary artery disease are scarce. We aimed to investigate the link between mortality and RDW in patients with stable coronary artery disease undergoing percutaneous coronary intervention (PCI).MethodsWe analyzed 2550 consecutive patients with stable coronary artery disease who underwent PCI between 2007 and 2011 at our institution. The patients were divided into four groups according to RDW quartiles. The association between the RDW values and the outcomes was assessed using Cox proportional regression analysis after adjusting for clinical, echocardiographic, hemodynamic and laboratory data in the whole population and in subgroups stratified by gender, presence of diabetes, anemia or heart failure.ResultsIn the entire population, there was a stepwise relationship between RDW intervals and comorbidities. Patients with the highest RDW values were older and more often burdened with diabetes, heart failure and chronic kidney disease. There was an almost 4-fold increase in mortality during an average of 2.5 years of follow-up between the group of patients with RDW values lower than 13.1% (25th percentile) and the group with RDW values higher than 14.1% (75th percentile), (4.3% vs. 17.1%, p < 0.0001). After adjusting for the covariates, RDW remained significantly associated with mortality in the whole cohort (HR-1.23 [95% CI (1.13-1.35), p < 0.0001]) and in the subgroups stratified by gender, age (over and under 75 years), presence of anemia, diabetes, heart failure and chronic kidney disease.ConclusionHigher RDW values correspond to higher comorbidity burdens and higher mortality. RDW is an independent predictor of mortality in patients with stable coronary artery disease.
Under homeostatic conditions, an equilibrium state between amounts of free radicals formed and their scavenging is observed. Free radicals are destructive only when present in excess. Pathological changes within cells and tissues can result from a persistent excess of free radicals. Living organisms are increasingly exposed to oxidative stress, resulting in oxidative DNA modifications. One such modification is 8-hydroxy-2'-deoxyguanosine (8-OHdG). It is considered a biomarker of oxidative stress and oxidative DNA damage. It has been found both in physiological fluids and in cells. This paper presents methods found in the literature for determining 8-OHdG expression in various kinds of biological material -blood, urine or liver homogenates. Methods for determining the biomarker expression have been grouped into direct and indirect methods, and the various levels of 8-hydroxy-2'-deoxyguanosine that can be determined by the different techniques are presented. The basic pros and cons of the various techniques are also discussed.
BackgroundNeointima forming after stent implantation consists of vascular smooth muscle cells (VSMCs) in 90%. Growth factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A play an important role in VSMC proliferation and migration to the tunica intima after arterial wall injury. The aim of this paper was an analysis of functional polymorphisms in genes encoding TGF-β1, PDGFB, EGF, bFGF and VEGF-A in relation to in-stent restenosis (ISR).Materials and Methods265 patients with a stable coronary artery disease (SCAD) hospitalized in our center in the years 2007–2011 were included in the study. All patients underwent stent implantation at admission to the hospital and had another coronary angiography performed due to recurrence of the ailments or a positive result of the test assessing the coronary flow reserve. Angiographically significant ISR was defined as stenosis >50% in the stented coronary artery segment. The patients were divided into two groups–with angiographically significant ISR (n = 53) and without significant ISR (n = 212). Additionally, the assessment of late lumen loss (LLL) in vessel was performed. EGF rs4444903 polymorphism was genotyped using the PCR-RFLP method whilst rs1800470 (TGFB1), rs2285094 (PDGFB) rs308395 (bFGF) and rs699947 (VEGF-A) were determined using the TaqMan method.ResultsAngiographically significant ISR was significantly less frequently observed in the group of patients with the A/A genotype of rs1800470 polymorphism (TGFB1) versus patients with A/G and G/G genotypes. In the multivariable analysis, LLL was significantly lower in patients with the A/A genotype of rs1800470 (TGFB1) versus those with the A/G and G/G genotypes and higher in patients with the A/A genotype of the VEGF-A polymorphism versus the A/C and C/C genotypes. The C/C genotype of rs2285094 (PDGFB) was associated with greater LLL compared to C/T heterozygotes and T/T homozygotes.ConclusionsThe polymorphisms rs1800470, rs2285094 and rs6999447 of the TGFB1, PDGFB and VEGF-A genes, respectively, are associated with LLL in patients with SCAD treated by PCI with a metal stent implantation.
In this paper the physiological role of NO and isoforms of NOS in the gastrointestinal tract and the involvement of NO in pathological processes of digestive tract as well as the perspective of therapeutic use of NO-donating drugs and selective inhibitors of phosphodiesterase in the treatment of gastric diseases were presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.