We present here a critical review of several technologically important electrocatalytic systems operating in alkaline electrolytes. These include the oxygen reduction reaction (ORR) occurring on catalysts containing Pt, Pd, Ir, Ru, or Ag, the methanol oxidation reaction (MOR) occurring on Pt-containing catalysts, and the ethanol oxidation reaction (EOR) occurring on Ni-Co-Fe alloy catalysts. Each of these catalytic systems is relevant to alkaline fuel cell (AFC) technology, while the ORR systems are also relevant to chlor-alkali electrolysis and metal-air batteries. The use of alkaline media presents advantages both in electrocatalytic activity and in materials stability and corrosion. Therefore, prospects for the continued development of alkaline electrocatalytic systems, including alkaline fuel cells, seem very promising.
Electrooxidation of methanol in sulfuric acid solution was studied using Pt, Pt/Ni(1:1 and 3:1), Pt/Ru/Ni(5: 4:1 and 6:3.5:0.5), and Pt/Ru(1:1) alloy nanoparticle catalysts, in relation to methanol oxidation processes in the direct oxidation methanol fuel cell. The Pt/Ni and Pt/Ru/Ni alloys showed excellent catalytic activities compared to those of pure Pt and Pt/Ru. The role of Ni as a catalytically enhancing agent in the oxidation process was interrogated using cyclic voltammetry, chronoamperometry, X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray diffraction. X-ray diffraction data showed alloy formation for all Pt/Ni, Pt/Ru/Ni, and Pt/Ru nanoparticles, whereas X-ray photoelectron spectroscopy confirmed that chemical states of Pt were exclusively metallic. The presence of metallic Ni, NiO, Ni(OH) 2 , NiOOH, metallic Ru, RuO 2 , and RuO 3 was also confirmed. We found that the Pt4f binding energies for the Pt/Ni and Pt/Ru/Ni alloy nanoparticles were lower than those for clean Pt nanoparticles. The oxides that serve as the oxygen donors for the oxidation process, and the change in the electronic structure of the Pt component in the alloys versus those in Pt and Pt/Ru collectively account, we believe, for enhancement in rates of methanol oxidation. The difference in the peak shift in Pt4f between Pt/Ni and Pt/Ru alloy nanoparticles is discussed by using electronegativities of the three components: Pt, Ru, and Ni. A comparison between the alloy nanoparticle composition and that of disk alloy electrodes under similar conditions was made in terms of the surface-tovolume ratio and surface segregation of the alloying components.
First principles density functional theoretical calculations were carried out to examine and compare the reaction paths and ensembles for the electrocatalytic oxidation of methanol and formic acid in the presence of solution and applied electrochemical potential. Methanol proceeds via both direct and indirect pathways which are governed by the initial C-H and O-H bond activation, respectively. The primary path requires an ensemble size of between 3-4 Pt atoms, whereas the secondary path is much less structure sensitive, requiring only 1-2 metal atoms. The CO that forms inhibits the surface at potentials below 0.66 V NHE. The addition of Ru results in bifunctional as well as electronic effects that lower the onset potential for CO oxidation. In comparison, formic acid proceeds via direct, indirect and formate pathways. The direct path, which involves the activation of the C-H bond followed by the rapid activation of the O-H bond, was calculated to be the predominant path especially at potentials greater than 0.6 V. The activation of the O-H bond of formic acid has a very low barrier and readily proceeds to form surface formate intermediates as the first step of the indirect formate path. Adsorbed formate, however, was calculated to be very stable, and thus acts as a spectator species. At potentials below 0.6 V NHE, CO, which forms via the non-Faradaic hydrolytic splitting of the C-O bond over stepped or defect sites in the indirect path, can build up and poison the surface. The results indicate that the direct path only requires a single Pt atom whereas the indirect path requires a larger surface ensemble and stepped sites. This suggests that alloys will not have the same influence on formic acid oxidation as they do for methanol oxidation.
We report a combined X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and chronoamperometry (CA) study of formic acid electrooxidation on unsupported palladium nanoparticle catalysts in the particle size range from 9 to 40 nm. The CV and CA measurements show that the most active catalyst is made of the smallest (9 and 11 nm) Pd nanoparticles. Besides the high reactivity, XPS data show that such nanoparticles display the highest core-level binding energy (BE) shift and the highest valence band (VB) center downshift with respect to the Fermi level. We believe therefore that we found a correlation between formic acid oxidation current and BE and VB center shifts, which, in turn, can directly be related to the electronic structure of palladium nanoparticles of different particle sizes. Clearly, such a trend using unsupported catalysts has never been reported. According to the density functional theory of heterogeneous catalysis, and mechanistic considerations, the observed shifts are caused by a weakening of the bond strength of the COOH intermediate adsorption on the catalyst surface. This, in turn, results in the increase in the formic acid oxidation rate to CO2 (and in the associated oxidation current). Overall, our measurements demonstrate the particle size effect on the electronic properties of palladium that yields different catalytic activity in the HCOOH oxidation reaction. Our work highlights the significance of the core-level binding energy and center of the d-band shifts in electrocatalysis and underlines the value of the theory that connects the center of the d-band shifts to catalytic reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.