The corrosion inhibition of mild steel in H 2 SO 4 in the presence of methocarbamol was studied using thermometric and gasometric (hydrogen evolution) methods. The study revealed that the corrosion rate increases with temperature, time and concentration of H 2 SO 4 . Addition of methocarbamol to the corrodent solution lowered the corrosion rate of mild steel. Inhibition efficiency (%I) of methocarbamol was found to increase with concentration and decreased with temperature. Adsorption of methocarbamol molecule on mild steel surface was found to obey the Langmuir adsorption isotherm. The phenomenon of physical adsorption is proposed from the obtained thermodynamic parameters.
Inhibitive and adsorption properties of ethanol extract of Lasianthera africana for inhibition of corrosion of mild steel in H 2 SO 4 were studied using gravimetric, thermometric, gasometric, and infrared (IR) methods. The extract was found to be a good inhibitor of corrosion of mild steel in H 2 SO 4 . Inhibitive properties of the extract were attributed to enhancement in adsorption of the inhibitor on mild-steel surface by saponin, alkaloid, tannin, flavanoid, cardiac glycoside, and anthraquinone (present in the extract). Also, adsorption of the inhibitor was found to be exothermic, spontaneous, and consistent with assumptions of Langmuir and Temkin adsorption isotherms. Synergistic study revealed that, of the investigated halides, only KCl may enhance adsorption of the inhibitor, whereas KBr and KI antagonized its adsorption. Based on the decrease in efficiency of the inhibitor with temperature, with values of activation energy and free energy of adsorption below the threshold values of -40 and 80 kJ mol -1 , respectively, a physical adsorption mechanism has been proposed for adsorption of ethanol extract of Lasianthera africana on the surface of mild steel.
Inhibitive and adsorption properties of ethanol extract of vernonia amygdalina for the corrosion of mild steel were studied using weight loss, thermometric, gasometric and IR methods of monitoring corrosion. The results revealed that ethanol extract of Vernonia amygdalina inhibited the corrosion of mild steel. The inhibition efficiency of the extract increased as the concentration of the extract increases. The inhibitor was found to function by being adsorbed on the surface of mild steel. The adsorption of the inhibitor followed the Langmuir adsorption isotherm. IR spectra of the corrosion product (without inhibitor), the extract and the corrosion product (with the inhibitor) confirmed that ethanol extract of vernonia amygdalina is an adsorption inhibitor. Phytochemical studies also revealed that ethanol vernonia amygdalina contains tannin, saponnins, flavanoid and anthraquinone, all of them contributing to the corrosion inhibition. Physical adsorption mechanism has been proposed from the values of some of the thermodynamic parameters obtained.
Examination of the physical (colour, odour, pH, solubility in various solvents) and chemical (GCMS and FTIR) characteristics of Ficus benjamina gum revealed that the gum is yellowish in colour, mildly acidic and ionic in nature. Major constituents of the gums were found to be sucrose and d-glucose, which constituted 60.92 % of their chemical constituents, while various carboxylic acids [(albietic acid (1.00%), hexadecanoic acid (4.41 %), 9-octadecanoic acid (1.00 %), octadecanoic acid (3.01 %), oleic acid (0.10 %), octadecanoic acid (9.12 %) and 6,13-pentacenequinone (20.43 %)] accounted for the remaining constituents. Functional groups identified in the gum were found to be those typical for other carbohydrates. From the knowledge of the chemical structures of compounds that constitute the gum, the corrosion inhibition potentials of the gum were ascertained and from weight loss analysis, the gum was found to be an active inhibitor against the corrosion of aluminum in solutions of tetraoxosulphate (VI) acid. The gum acted as an adsorption inhibitor that favours the mechanism of chemical adsorption and supported the Frumkin and Dubinin-Radushkevich adsorption models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.