The physical parameters of the subsurface from the environmental site investigation are important for geoscientists and engineers to understand and very low cost-effective method, especially when combined with geophysical (seismic) and geotechnical (borehole) surveys. These parameters can be estimated from other obtained parameters. In this study, P-wave velocities of materials (soils and rocks) are studied both in the laboratory and field measurement. The obtained P-wave velocities are then compared with the engineering parameters such N values, rock quality, friction angle, relative density, velocity index, density and penetration strength from boreholes. The empirical correlations were also found in this study for selected parameters. The estimation of engineering parameters from P-wave seismic velocity values is applicable for tropical environmental study. It is found that, the ratio (<i>V<sub>FIELD</sub>/V<sub>LAB</sub></i>) when squared, was numerically close to the value of percentage RQD. We found that the empirical correlation for tropical environmental study is <i>V<sub>P</sub></i> = 23.605(<i>N</i>) - 160.43 and the regression found is 0.9315 (93.15%). Meanwhile, the empirical correlation between P-wave velocities and RQD values is found as <i>V<sub>P</sub></i> = 21.951(<i>RQD</i>) + 0.1368 and the regression found is 0.8377 (83.77%). The correlation between apparent P-wave velocities with penetration strength for both study sites are found as and the regression coefficient is found as 0.9756. Thus, this study helps for the estimation and prediction the properties of the subsurface material (soils and rocks) especially in reducing the cost of investigation and increase the understanding of the Earth’s subsurface characterizations physical parameters
Soil is a heterogeneous medium which consist of liquid, solid, and gaseous phases. The solid and liquid phases play an essential role in soil spontaneous electrical phenomena and in behaviour of electrical fields, artificially created in soil. Soil electrical properties are the parameters of natural and artificially created electrical fields in soils and influenced by distribution of mobile electrical charges, mostly inorganic ions, in soils. Geophysical method of electrical resistivity was used for measuring soil electrical properties and tested in different soil studies. Laboratory tests were performed for the numbers of clayey sandy soil samples taken from Batu Uban area. The empirical correlations between electrical parameter, percentage of liquid limit, plastic limit, plasticity index, moisture content and effective soil cohesion were obtained via curvilinear models. The ranges of the soil samples are changed between 229 Ωm to 927 Ωm for resistivity (ρ), 6.01 kN/m 2 to 14.27 kN/m 2 for effective soil cohesion (C'), 35.08 kN/m 2 to 51.47 kN/m 2 for internal fiction angle (Ø'), 38% to 88% for moisture content (W), 33% to 78% for liquid limit (W L ), 21% to 43% for plastic limit (W p ) and 11% to 35% for plasticity index (PI). These empirical correlations model developed in this study provides a very useful tool to relate electrical resistivity with effective cohesion, internal friction angle (strength), void ratio, porosity, degree of saturation, moisture content, liquid limit, plastic limit and plasticity index in context of medium-grained of clayey sandy soil that is, its fluid behaviours.
The geoelectrical resistivity and seismic refraction surveys which were used in this study on the test site, delivered a detailed image of the near-surface conditions in generally very good. Electrical resistivity and seismic refraction analysis proved that a combination of these integrated study of the physical environmental data provided a reasonable compromise between measurement time and image resolution. Quantitative interpretation of the resistivity and seismic models based on soil's parameters determined using laboratory practices and field survey could reproduce the range of resistivity and seismic values found on the site very well. The model explains the ambiguity in between resistivity and clayey sands found on the site and predict the dominant role of water saturation. Geophysical methods are used in this research in purpose to determine the internal structure of a soil mass. Various geophysical methods and their merits for imaging subsurface structures and condition are discussed. Seismic methods are often the most suitable because the measurements depend on the mechanical properties which are also important in the mechanical calculation of soil's behaviour analysis. Other geophysical method, such as geoelectric resistivity, is useful to determine the internal structure, but require a correlation of found boundaries with mechanical properties. This research was conducted to investigate the subsurface structures and conditions through geotechnical engineering properties and its geophysical characteristics. The computation analysis is used in this research in purpose to investigate clayey sand soil's behaviour. Electrical resistivity test and engineering laboratory practices such as soil strength test, liquid limit test, plastic limit test and grain size distribution test was also carried out to investigate clayey sand soil behaviour in Batu Uban, Penang area during monitoring period
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.