We introduce rugged fitness landscapes called match landscapes for the coevolution of feature-based assortative interactions between P ≥ 2 cognate pairs of tRNAs and aminoacyl-tRNA synthetases (aaRSs) in aaRS-tRNA interaction networks. Our genotype-phenotype-fitness maps assume additive feature-matching energies, a macroscopic theory of aminoacylation kinetics including proofreading, and selection for translational accuracy in multiple, perfectly encoded site-types. We compute the stationary genotype distributions of finite panmictic, asexual populations of haploid aaRs-tRNA interaction networks evolving under mutation, genetic drift, and selection for cognate matching and non-cognate mismatching of aaRS-tRNA pairs. We compared expected genotype frequencies under different matching rules and fitness functions, both with and without linked site-specific modifiers of interaction. Under selection for translational accuracy alone, our model predicts no selection on modifiers to eliminate non-cognate interactions, so long as they are compensated by tighter cognate interactions. Only under combined selection for both translational accuracy and rate do modifiers adaptively eliminate cross-matching in non-cognate aaRS/tRNA pairs. We theorize that the encoding of macromolecular interaction networks is a genetic language that symbolically maps identifying structural and dynamic features of genes and gene-products to functions within cells. Our theory helps explain 1) the remarkable divergence in how aaRSs bind tRNAs, 2) why interaction-informative features are phylogenetically informative, 3) why the Statistical Tree of Life became more tree-like after the Darwinian Transition, and 4) an approach towards computing the probability of the random origin of an interaction network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.