Degradation of technical nonylphenol by Sphingobium xenophagum Bayram led to a significant shift in the isomers composition of the mixture. By means of gas chromatography-mass spectrometry, we could observe a strong correlation between transformation of individual isomers and their alpha-substitution pattern, as expressed by their assignment to one of six mass spectrometric groups. As a rule, isomers with less bulkiness at the alpha-carbon and those with an optimally sized main alkyl chain (4-6 carbon atoms) were degraded more efficiently. By mass spectrometric analysis, we identified the two most recalcitrant main isomers of the technical mixture (Group 4) as 4-(1,2-dimethyl-1-propylbutyl)phenols (NP193a and NP193b), which are diastereomers with a bulky alpha-CH3, alpha-CH(CH3)C2H5 substitution. Our experiments with strain Bayram show that the selective enrichment of isomers with bulky alpha-substitutions observed in nonylphenol fingerprints of natural systems can be caused by microbial ipso-hydroxylation. Based on the yeast estrogen assay (YES), we established an estrogenicity ranking with a variety of single isomers and compared it to rankings obtained with different reporter cell systems. Structure-activity relationships derived from these data suggest that Group 4 isomers have a high estrogenic potency. This indicates a substantial risk that enrichment of highly estrogenic isomers during microbial degradation by ipso-substitution will increase the specific estrogenicity of aging material.
Several nonylphenol isomers with ␣-quaternary carbon atoms serve as growth substrates for Sphingomonas xenophaga Bayram, whereas isomers containing hydrogen atoms at the ␣-carbon do not (Gabriel, F. L. P., Giger, W., Guenther, K., and Kohler, H. Furthermore, two metabolites originating from 4-n-nonylphenol were identified as 4-hydroxy-4-nonyl-cyclohexa-2,5-dienone and 4-hydroxy-4-nonyl-cyclohex-2-enone by high pressure liquid chromatography-mass spectrometry. We conclude that nonylphenols were initially hydroxylated at the ipsoposition forming 4-alkyl-4-hydroxy-cyclohexa-2,5-dienones. Dienones originating from growth substrate nonylphenol isomers underwent a rearrangement that involved a 1,2-C,O shift of the alkyl moiety as a cation to the oxygen atom of the geminal hydroxy group yielding 4-alkoxyphenols, from which the alkyl moieties can be easily detached as alcohols by known mechanisms. Dienones originating from nongrowth substrates did not undergo such a rearrangement because the missing alkyl substituents at the ␣-carbon atom prevented stabilization of the putative ␣-carbocation. Instead they accumulated and subsequently underwent side reactions, such as 1,2-C,C shifts and dihydrogenations. The ipso-hydroxylation and the proposed 1,2-C,O shift constitute key steps in a novel pathway that enables bacteria to detach ␣-branched alkyl moieties of alkylphenols for utilization of the aromatic part as a carbon and energy source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.