Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model. Several experimental studies have demonstrated that DFP-induced seizures and/or status epilepticus (SE) causes permanent brain injury, even after the countermeasure medication (atropine, oxime, and diazepam). In the present study, DFP-induced SE caused a significant increase in iNOS and 3-nitrotyrosine (3-NT) at 24h, 48h, 7d, and persisted for a long-term (12 weeks post-exposure), which led to the hypothesis that iNOS is a potential therapeutic target in DFP-induced brain injury. To test the hypothesis, we administered 1400W (20 mg/kg, i.m.) or the vehicle twice daily for the first three days of post-exposure. 1400W significantly reduced DFP-induced iNOS and 3-NT upregulation in the hippocampus and piriform cortex, and the serum nitrite levels at 24h post-exposure. 1400W also prevented DFP-induced mortality in <24h. The brain immunohistochemistry (IHC) at 7d post-exposure revealed a significant reduction in gliosis and neurodegeneration (NeuN+ FJB positive cells) in the 1400W-treated group. 1400W, in contrast to the vehicle, caused a significant reduction in the epileptiform spiking and spontaneous recurrent seizures (SRS) during 12 weeks of continuous video-EEG study. IHC of brain sections from the same animals revealed a significant reduction in reactive gliosis (both microgliosis and astrogliosis) and neurodegeneration across various brain regions in the 1400W-treated group when compared to the vehicle-treated group. A multiplex assay from hippocampal lysates at 6 weeks post-exposure showed a significant increase in several key pro-inflammatory cytokines/chemokines such as IL-1α, TNFα, IL-1β, IL-2, IL-6, IL-12, IL-17a, MCP-1, LIX, and Eotaxin, and a growth factor, VEGF in the vehicle-treated animals. 1400W significantly suppressed IL-1α, TNFα, IL-2, IL-12, and MCP-1 levels. It also suppressed DFP-induced serum nitrite levels at 6 weeks post-exposure. In the Morris water maze, the vehicle-treated animals spent significantly less time in the target quadrant in a probe trial at 9d post-exposure compared to their time spent in the same quadrant 11 days previously (i.e., 2 days prior to DFP exposure). Such difference was not observed in the 1400W and control groups. However, learning and short-term memory were unaffected when tested at 10–16d and 28–34d post-exposure. Accelerated rotarod, horizontal bar test, and the forced swim test revealed no significant changes between groups. Overall, the findings from this study suggest that 1400W may be considered as a potential therapeutic agent as a follow-on therapy for CNA e...
We have recently demonstrated the role of the Fyn-PKCδ signaling pathway in status epilepticus (SE)-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy (TLE). In this study, we show a significant disease-modifying effect and the mechanisms of a Fyn/Src tyrosine kinase inhibitor, saracatinib (SAR, also known as AZD0530), in the rat kainate (KA) model of TLE. SAR treatment for a week, starting the first dose (25 mg/kg, oral) 4 h after the onset of SE, significantly reduced spontaneously recurring seizures and epileptiform spikes during the four months of continuous video-EEG monitoring. Immunohistochemistry of brain sections and Western blot analyses of hippocampal lysates at 8-day (8d) and 4-month post-SE revealed a significant reduction of SE-induced astrogliosis, microgliosis, neurodegeneration, phosphorylated Fyn/Src-419 and PKCδ-tyr311, in SAR-treated group when compared with the vehicle control. We also found the suppression of nitroxidative stress markers such as iNOS, 3-NT, 4-HNE, and gp91 phox in the hippocampus, and nitrite and ROS levels in the serum of the SAR-treated group at 8d post-SE. The qRT-PCR (hippocampus) and ELISA (serum) revealed a significant reduction of key proinflammatory cytokines TNFα and IL-1β mRNA in the hippocampus and their protein levels in serum, in addition to IL-6 and IL-12, in the SAR-treated group at 8d in contrast to the vehicle-treated group. These findings suggest that SAR targets some of the key biomarkers of epileptogenesis and modulates neuroinflammatory and nitroxidative pathways that mediate the development of epilepsy. Therefore, SAR can be developed as a potential disease-modifying agent to prevent the development and progression of TLE.
Neuronal KCNQ channels mediate the M-current, a key regulator of membrane excitability in the central and peripheral nervous systems. Mutations in KCNQ2 channels cause severe neurodevelopmental disorders, including epileptic encephalopathies. However, the impact that different mutations have on channel function remains poorly defined, largely because of our limited understanding of the voltage sensing mechanisms that trigger channel gating. Here, we define parameters of voltage sensor movements in wt-KCNQ2 and channels bearing epilepsy-associated mutations using cysteine accessibility and voltage clamp fluorometry (VCF). Cysteine modification reveals that a stretch of 8-9 amino acids in the S4 become exposed upon VSD activation of KCNQ2 channels. VCF shows that the voltage dependence and the time course of S4 movement and channel opening/closing closely correlate. VCF reveals different mechanisms by which different epilepsy-associated mutations affect KCNQ2 channel voltage-dependent gating. This study provides insight into KCNQ2 channel function, which will aid in uncovering the mechanisms underlying channelopathies.
MTSET labels residues N190C (Q218C) with a similar time course in both closed and open states. By contrast, extracellular MTSET modifies residues A193 to R201 in KCNQ2 (G219-S228 in KCNQ3) at depolarized potentials, but not at hyperpolarized potentials, suggesting that these residues likely lie buried in the membrane in the closed state. We also use voltage clamp fluorometry (VCF) to determine S4 movement in KCNQ2/3 channels. In homomeric KCNQ channels, the time course and voltage dependence of fluorescence F(V) and ionic current G(V) correlate, as if the S4 and the gate motion were directly coupled. Moreover, in KCNQ2, the F(V) follows the voltage dependence of the modification rate of residue A193C. Our data also indicate that the presence of KCNQ3 subunits affects the S4 and gate of KCNQ2 in heteromeric KCNQ2/3 channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.