Interfacial thin liquid films between solid bodies have been measured using ultrasonic reflective techniques in a range of tribological applications such as those present in hydrodynamic bearings, piston rings and mechanical seals (Dwyer-Joyce et al (2004) Tribol. Lett. 17 337–48, Dwyer-Joyce et al (2006) Proc. Instn Mech. Eng. A 220 619–28, Reddyhoff et al (2006) Tribol. Trans. 51 140–49, Harper et al (2005) Tribol. Interface Eng. Ser. 48 305–12). There are two main ultrasonic methods used, the spring model and film resonance techniques. For very thin films (<20 µm) a simple quasi-static spring model has been used to show that the proportion of the wave reflected by the liquid layer depends on the stiffness of the layer. This stiffness can be related to the layer thickness and its material properties. In the film resonance technique the incident ultrasonic wave is used to resonate the liquid layer. The frequency of resonance can then be related to the layer thickness. This paper collates four experiments where oil film thickness is measured by both ultrasonic reflection and an independent method. In the first three experiments the film thickness is measured ultrasonically and this measurement is compared to the thickness inferred from the geometry of the surfaces constraining the liquid film. In the final experiment the ultrasonic results are compared to measurements taken using capacitive and verified laser interferometer techniques. Excellent correlation was observed between the measurement methods in all of the experiments. In particular the film resonance technique showed repeatable and consistent results across a wide range of film thicknesses. The spring model showed a degree of agreement for films above a few microns but this relationship diverged as the film thickness approached the magnitude of the surface roughness.
A key parameter in hydrodynamic journal bearing performance is lubricant layer thickness around the circumference of the shaft-bearing interface. In the present work, the ultrasonic amplitude, phase change and resonant dip techniques are applied to obtain circumferential film thickness profiles in a bespoke journal bearing test platform under a range of shaft-aligned, shaft-misaligned and shut-down operating conditions. Film thickness results are compared against the Raimondi-Boyd theoretical prediction model and eddy current sensor measurements. By using an on-line referencing technique, the amplitude and phase change models demonstrated high accuracy for thin films and the resonant dip technique enabled film measurements within the bearing thick film region. Thus, applying the three methods simultaneously allowed analysis of lubricant films around the bearing circumference.
The interfacial contact conditions between a railway vehicle wheel and the rail are paramount to the lifespan, safety and smooth operation of any rail network. The wheel–rail interface contact pressure and area conditions have been estimated, calculated and simulated by industry and academia for many years, but a method of accurately measuring dynamic contact conditions has yet to be realised. Methods using pressure-sensitive films and controlled air flow have been employed, but both are limited. Ultrasonic reflectometry is the term given to active ultrasonics in which an ultrasonic transducer is mounted on the outer surface of a component and a sound wave is generated. This ultrasonic wave packet propagates through the host medium and reflects off the contacting interface of interest. The reflected waveform is then detected and contact area and interfacial stiffness information can be extracted from the signal using the quasi-static spring model. Stiffness can be related to contact pressure by performing a simple calibration procedure. Previous contact pressure measurement work has relied on using a focusing transducer and a two-dimensional scanning arrangement which results in a high-resolution image of the wheel–rail contact, but is limited to static loading of a specimen cut from a wheel and rail. The work described in this paper has assessed the feasibility of measuring a dynamic wheel–rail contact patch using an array of 64 ultrasonic elements mounted in the rail. Each element is individually pulsed in sequence to build up a linear cross-sectional pressure profile measurement of the interface. These cross-sectional, line measurements are then processed and collated resulting in a two-dimensional contact pressure profile. Measurements have been taken at different speeds and loads.
The risk of wheel-climb derailment increases if the traction coefficient in the wheel/rail contact is too high. This has been observed to happen more frequently just after wheel machining. This work investigates how the traction coefficient rises with evolution of the wheel/rail interface during the running-in. Experiments were performed using a fullscale wheel/rail contact rig and an ultrasonic array transducer mounted in the rail. Results were used to determine the stiffness of the contact interface. Contact stiffness appeared to be positively correlated with the traction coefficient. Owing to the conforming of the interface, contact stiffness increases before the traction coefficient rises. The work will allow recommendation of wheel machining to be made to help reduce the problem of wheel-climb derailment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.