The energy consumed by data centers is starting to make up a significant fraction of the world's energy consumption and carbon emissions. A large fraction of the consumed energy is spent on data center cooling, which has motivated a large body of work on temperature management in data centers. Interestingly, a key aspect of temperature management has not been well understood: controlling the setpoint temperature at which to run a data center's cooling system. Most data centers set their thermostat based on (conservative) suggestions by manufacturers, as there is limited understanding of how higher temperatures will affect the system. At the same time, studies suggest that increasing the temperature setpoint by just one degree could save 2-5% of the energy consumption.This paper provides a multi-faceted study of temperature management in data centers. We use a large collection of field data from different production environments to study the impact of temperature on hardware reliability, including the reliability of the storage subsystem, the memory subsystem and server reliability as a whole. We also use an experimental testbed based on a thermal chamber and a large array of benchmarks to study two other potential issues with higher data center temperatures: the effect on server performance and power. Based on our findings, we make recommendations for temperature management in data centers, that create the potential for saving energy, while limiting negative effects on system reliability and performance.
The objective of this work is to develop a mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combination and modification of the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for both suboptimal and the entire growth temperature ranges, was validated using a collection of 23 selected temperature-growth rate curves belonging to 5 groups of microorganisms, including Pseudomonas spp., Listeria monocytogenes, Salmonella spp., Clostridium perfringens, and Escherichia coli, from the published literature. The curve fitting is accomplished by nonlinear regression using the Levenberg-Marquardt algorithm. The resulting estimated growth rate (μ) values are highly correlated to the data collected from the literature (R(2) = 0.985, slope = 1.0, intercept = 0.0). The bias factor (B(f) ) of the new model is very close to 1.0, while the accuracy factor (A(f) ) ranges from 1.0 to 1.22 for most data sets. The new model is compared favorably with the Ratkowsky square root model and the Eyring equation. Even with more parameters, the Akaike information criterion, Bayesian information criterion, and mean square errors of the new model are not statistically different from the square root model and the Eyring equation, suggesting that the model can be used to describe the inherent relationship between temperature and microbial growth rates. The results of this work show that the new growth rate model is suitable for describing the effect of temperature on microbial growth rate. Practical Application: Temperature is one of the most significant factors affecting the growth of microorganisms in foods. This study attempts to develop and validate a mathematical model to describe the temperature dependence of microbial growth rate. The findings show that the new model is accurate and can be used to describe the effect of temperature on microbial growth rate in foods.
As solid state drives (SSDs) are increasingly replacing hard disk drives, the reliability of storage systems depends on the failure modes of SSDs and the ability of the file system layered on top to handle these failure modes. While the classical paper on IRON File Systems provides a thorough study of the failure policies of three file systems common at the time, we argue that 13 years later it is time to revisit file system reliability with SSDs and their reliability characteristics in mind, based on modern file systems that incorporate journaling, copy-on-write, and log-structured approaches and are optimized for flash. This article presents a detailed study, spanning ext4, Btrfs, and F2FS, and covering a number of different SSD error modes. We develop our own fault injection framework and explore over 1,000 error cases. Our results indicate that 16% of these cases result in a file system that cannot be mounted or even repaired by its system checker. We also identify the key file system metadata structures that can cause such failures, and, finally, we recommend some design guidelines for file systems that are deployed on top of SSDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.