CLOUd COMPUting, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Developers with innovative ideas for new Internet services no longer require the large capital outlays in hardware to deploy their service or the human expense to operate it. They need not be concerned about overprovisioning for a service whose popularity does not meet their predictions, thus wasting costly resources, or underprovisioning for one that becomes wildly popular, thus missing potential customers and revenue. Moreover, companies with large batch-oriented tasks can get results as quickly as their programs can scale, since using 1,000 servers for one hour costs no more than using one server for 1,000
No abstract
No abstract
There is high demand for I/O tracing in High Performance Computing (HPC). It enables in-depth analysis of distributed applications and file system performance tuning. It also aids distributed application debugging. Finally, it facilitates collaboration within and between government, industrial, and academic institutions by enabling the generation of replayable I/O traces, which can be easily distributed and anonymized as necessary to protect confidential or sensitive information. As a response to this demand for tracing tools, various means of I/O trace generation exist. We first survey the I/O Tracing Framework landscape, exploring three popular such frameworks: LANLTrace [3], Tracefs [1], and //TRACE 1 [2]. We next develop an I/O Tracing Framework taxonomy. The purpose of this taxonomy is to assist I/O Tracing Framework users in formalizing their tracing requirements, and to provide the developers of I/O Tracing Frameworks a language to categorize the functionality and performance of them. The taxonomy categorizes I/O Tracing Framework features such as the type of data captured, trace replayability, and anonymization. The taxonomy also considers elapsed-time overhead and performance overhead. Finally, we provide a case study in the use of our new taxonomy, revisiting all three I/O Tracing Frameworks explored in our survey, to formally classify the features of each.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.