This chapter discusses the critical issues of information quality (IQ) associated with engineering assets management. It introduces an asset management (AM) specific IQ framework as a means of studying IQ in engineering asset management. It argues that it is essential to ensure the quality of data in monitoring systems, control systems, maintenance systems, procurement systems, logistics systems, and range of mission support applications in order to facilitate effective AM. There is also a growing need to address the issue of IQ in enterprise asset management (EAM) systems, by analyzing existing practices and developing frameworks/models to assist engineering enterprises to capture, process and deliver quality data and information. Furthermore, the authors hope that a better understanding of the current issues and emerging key factors for ensuring high quality AM data through the use of the AM IQ framework will not only raise the general IQ awareness in engineering asset management organisations, but also assist AM and IT professionals in obtaining an insightful and overall appreciation about what AM IQ problems are and why they have emerged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.