Knowing which processes and species are responsible for discharge inception is important for being able to speed up, delay, or completely avoid it. We study discharge inception in 500 mbar synthetic air by applying 10 ms long 17 kV pulses with a repetition frequency of 2 Hz to a pin-to-plate electrode geometry with a gap length of 6 cm. We record inception times for hundreds of pulses by measuring the time delay between the rising edge of the high-voltage (HV) pulse and the signal from a photo-multiplier tube. Three characteristic time scales for inception are observed: (1) 20 ns, (2) 25 μs, and (3) 125 μs. To investigate the underlying processes, we apply a low-voltage (LV) pulse in between the HV pulses. These LV pulses can speed up or delay discharge inception, and our results suggest that the three time scales correspond to: (1) free electrons or electron detachment from negative ions close to the electrode, (2) a process that liberates electrons from (quasi)-neutrals, and (3) the drift of an elevated density of negative ions to the ionization zone. However, each of these explanations has its caveats, which we discuss. We present a theoretical analysis of the distribution of inception times, and perform particle simulations in the experimental discharge geometry. Some of the observed phenomena can be explained by these approaches, but a surprizing number of open questions remain.
We present cross sections for the neutral dissociation of methane, in a large part obtained through analytical approximations. With these cross sections the work of Song et al (2015 J. Phys. Chem. Ref. Data 44 023101) can be extended, which results in a complete and consistent set of cross sections for the collision of electrons with up to 100 eV energy with methane molecules. Notably, the resulting cross section set does not require any data fitting to produce bulk swarm parameters that match with experiments. Therefore consistency can be considered an inherent trait of the set, since swarm parameters are used exclusively for validation of the cross sections. Neutral dissociation of methane is essential to include (1) because it is a crucial electron energy sink in methane plasma, and (2) because it largely contributes to the production of hydrogen radicals that can be vital for plasma-chemical processes. Finally, we compare the production rates of hydrogen species for a swarm-fitted data set with ours. The two consistent cross section sets predict different production rates, with differences of 45% (at 100 Td) and 125% (at 50 Td) for production of H 2 and a similar trend for production of H. With this comparison we underline that the swarm-fitting procedure, used to ensure consistency of the electron swarm parameters, can possibly degrade the accuracy with which chemical production rates are estimated. This is of particular importance for applications with an emphasis on plasma-chemical activation of the gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.